This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication property of outer product. (Contributed by NM, 31-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kbmul | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( A .h B ) ketbra C ) = ( B ketbra ( ( * ` A ) .h C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl | |- ( ( A e. CC /\ B e. ~H ) -> ( A .h B ) e. ~H ) |
|
| 2 | kbfval | |- ( ( ( A .h B ) e. ~H /\ C e. ~H ) -> ( ( A .h B ) ketbra C ) = ( x e. ~H |-> ( ( x .ih C ) .h ( A .h B ) ) ) ) |
|
| 3 | 1 2 | stoic3 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( A .h B ) ketbra C ) = ( x e. ~H |-> ( ( x .ih C ) .h ( A .h B ) ) ) ) |
| 4 | simp2 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> B e. ~H ) |
|
| 5 | cjcl | |- ( A e. CC -> ( * ` A ) e. CC ) |
|
| 6 | 5 | 3ad2ant1 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( * ` A ) e. CC ) |
| 7 | simp3 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> C e. ~H ) |
|
| 8 | hvmulcl | |- ( ( ( * ` A ) e. CC /\ C e. ~H ) -> ( ( * ` A ) .h C ) e. ~H ) |
|
| 9 | 6 7 8 | syl2anc | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( * ` A ) .h C ) e. ~H ) |
| 10 | kbfval | |- ( ( B e. ~H /\ ( ( * ` A ) .h C ) e. ~H ) -> ( B ketbra ( ( * ` A ) .h C ) ) = ( x e. ~H |-> ( ( x .ih ( ( * ` A ) .h C ) ) .h B ) ) ) |
|
| 11 | 4 9 10 | syl2anc | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( B ketbra ( ( * ` A ) .h C ) ) = ( x e. ~H |-> ( ( x .ih ( ( * ` A ) .h C ) ) .h B ) ) ) |
| 12 | simpr | |- ( ( ( A e. CC /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> x e. ~H ) |
|
| 13 | simpl3 | |- ( ( ( A e. CC /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> C e. ~H ) |
|
| 14 | hicl | |- ( ( x e. ~H /\ C e. ~H ) -> ( x .ih C ) e. CC ) |
|
| 15 | 12 13 14 | syl2anc | |- ( ( ( A e. CC /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( x .ih C ) e. CC ) |
| 16 | simpl1 | |- ( ( ( A e. CC /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> A e. CC ) |
|
| 17 | simpl2 | |- ( ( ( A e. CC /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> B e. ~H ) |
|
| 18 | ax-hvmulass | |- ( ( ( x .ih C ) e. CC /\ A e. CC /\ B e. ~H ) -> ( ( ( x .ih C ) x. A ) .h B ) = ( ( x .ih C ) .h ( A .h B ) ) ) |
|
| 19 | 15 16 17 18 | syl3anc | |- ( ( ( A e. CC /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( ( x .ih C ) x. A ) .h B ) = ( ( x .ih C ) .h ( A .h B ) ) ) |
| 20 | 15 16 | mulcomd | |- ( ( ( A e. CC /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( x .ih C ) x. A ) = ( A x. ( x .ih C ) ) ) |
| 21 | his52 | |- ( ( A e. CC /\ x e. ~H /\ C e. ~H ) -> ( x .ih ( ( * ` A ) .h C ) ) = ( A x. ( x .ih C ) ) ) |
|
| 22 | 16 12 13 21 | syl3anc | |- ( ( ( A e. CC /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( x .ih ( ( * ` A ) .h C ) ) = ( A x. ( x .ih C ) ) ) |
| 23 | 20 22 | eqtr4d | |- ( ( ( A e. CC /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( x .ih C ) x. A ) = ( x .ih ( ( * ` A ) .h C ) ) ) |
| 24 | 23 | oveq1d | |- ( ( ( A e. CC /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( ( x .ih C ) x. A ) .h B ) = ( ( x .ih ( ( * ` A ) .h C ) ) .h B ) ) |
| 25 | 19 24 | eqtr3d | |- ( ( ( A e. CC /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( x .ih C ) .h ( A .h B ) ) = ( ( x .ih ( ( * ` A ) .h C ) ) .h B ) ) |
| 26 | 25 | mpteq2dva | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( x e. ~H |-> ( ( x .ih C ) .h ( A .h B ) ) ) = ( x e. ~H |-> ( ( x .ih ( ( * ` A ) .h C ) ) .h B ) ) ) |
| 27 | 11 26 | eqtr4d | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( B ketbra ( ( * ` A ) .h C ) ) = ( x e. ~H |-> ( ( x .ih C ) .h ( A .h B ) ) ) ) |
| 28 | 3 27 | eqtr4d | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( A .h B ) ketbra C ) = ( B ketbra ( ( * ` A ) .h C ) ) ) |