This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication property of the converse bra function. (Contributed by NM, 31-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvbramul | |- ( ( A e. CC /\ T e. ( LinFn i^i ContFn ) ) -> ( `' bra ` ( A .fn T ) ) = ( ( * ` A ) .h ( `' bra ` T ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvbracl | |- ( T e. ( LinFn i^i ContFn ) -> ( `' bra ` T ) e. ~H ) |
|
| 2 | cjcl | |- ( A e. CC -> ( * ` A ) e. CC ) |
|
| 3 | brafnmul | |- ( ( ( * ` A ) e. CC /\ ( `' bra ` T ) e. ~H ) -> ( bra ` ( ( * ` A ) .h ( `' bra ` T ) ) ) = ( ( * ` ( * ` A ) ) .fn ( bra ` ( `' bra ` T ) ) ) ) |
|
| 4 | 2 3 | sylan | |- ( ( A e. CC /\ ( `' bra ` T ) e. ~H ) -> ( bra ` ( ( * ` A ) .h ( `' bra ` T ) ) ) = ( ( * ` ( * ` A ) ) .fn ( bra ` ( `' bra ` T ) ) ) ) |
| 5 | cjcj | |- ( A e. CC -> ( * ` ( * ` A ) ) = A ) |
|
| 6 | 5 | adantr | |- ( ( A e. CC /\ ( `' bra ` T ) e. ~H ) -> ( * ` ( * ` A ) ) = A ) |
| 7 | 6 | oveq1d | |- ( ( A e. CC /\ ( `' bra ` T ) e. ~H ) -> ( ( * ` ( * ` A ) ) .fn ( bra ` ( `' bra ` T ) ) ) = ( A .fn ( bra ` ( `' bra ` T ) ) ) ) |
| 8 | 4 7 | eqtrd | |- ( ( A e. CC /\ ( `' bra ` T ) e. ~H ) -> ( bra ` ( ( * ` A ) .h ( `' bra ` T ) ) ) = ( A .fn ( bra ` ( `' bra ` T ) ) ) ) |
| 9 | 1 8 | sylan2 | |- ( ( A e. CC /\ T e. ( LinFn i^i ContFn ) ) -> ( bra ` ( ( * ` A ) .h ( `' bra ` T ) ) ) = ( A .fn ( bra ` ( `' bra ` T ) ) ) ) |
| 10 | bracnvbra | |- ( T e. ( LinFn i^i ContFn ) -> ( bra ` ( `' bra ` T ) ) = T ) |
|
| 11 | 10 | oveq2d | |- ( T e. ( LinFn i^i ContFn ) -> ( A .fn ( bra ` ( `' bra ` T ) ) ) = ( A .fn T ) ) |
| 12 | 11 | adantl | |- ( ( A e. CC /\ T e. ( LinFn i^i ContFn ) ) -> ( A .fn ( bra ` ( `' bra ` T ) ) ) = ( A .fn T ) ) |
| 13 | 9 12 | eqtrd | |- ( ( A e. CC /\ T e. ( LinFn i^i ContFn ) ) -> ( bra ` ( ( * ` A ) .h ( `' bra ` T ) ) ) = ( A .fn T ) ) |
| 14 | 13 | fveq2d | |- ( ( A e. CC /\ T e. ( LinFn i^i ContFn ) ) -> ( `' bra ` ( bra ` ( ( * ` A ) .h ( `' bra ` T ) ) ) ) = ( `' bra ` ( A .fn T ) ) ) |
| 15 | hvmulcl | |- ( ( ( * ` A ) e. CC /\ ( `' bra ` T ) e. ~H ) -> ( ( * ` A ) .h ( `' bra ` T ) ) e. ~H ) |
|
| 16 | 2 1 15 | syl2an | |- ( ( A e. CC /\ T e. ( LinFn i^i ContFn ) ) -> ( ( * ` A ) .h ( `' bra ` T ) ) e. ~H ) |
| 17 | cnvbrabra | |- ( ( ( * ` A ) .h ( `' bra ` T ) ) e. ~H -> ( `' bra ` ( bra ` ( ( * ` A ) .h ( `' bra ` T ) ) ) ) = ( ( * ` A ) .h ( `' bra ` T ) ) ) |
|
| 18 | 16 17 | syl | |- ( ( A e. CC /\ T e. ( LinFn i^i ContFn ) ) -> ( `' bra ` ( bra ` ( ( * ` A ) .h ( `' bra ` T ) ) ) ) = ( ( * ` A ) .h ( `' bra ` T ) ) ) |
| 19 | 14 18 | eqtr3d | |- ( ( A e. CC /\ T e. ( LinFn i^i ContFn ) ) -> ( `' bra ` ( A .fn T ) ) = ( ( * ` A ) .h ( `' bra ` T ) ) ) |