This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integrability of a nonnegative function. (Contributed by Mario Carneiro, 31-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iblrelem.1 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
|
| iblpos.2 | |- ( ( ph /\ x e. A ) -> 0 <_ B ) |
||
| Assertion | iblpos | |- ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iblrelem.1 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
|
| 2 | iblpos.2 | |- ( ( ph /\ x e. A ) -> 0 <_ B ) |
|
| 3 | 1 | iblrelem | |- ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u B ) , -u B , 0 ) ) ) e. RR ) ) ) |
| 4 | df-3an | |- ( ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) ) e. RR /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u B ) , -u B , 0 ) ) ) e. RR ) <-> ( ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) ) e. RR ) /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u B ) , -u B , 0 ) ) ) e. RR ) ) |
|
| 5 | 3 4 | bitrdi | |- ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) ) e. RR ) /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u B ) , -u B , 0 ) ) ) e. RR ) ) ) |
| 6 | 1 2 | iblposlem | |- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u B ) , -u B , 0 ) ) ) = 0 ) |
| 7 | 0re | |- 0 e. RR |
|
| 8 | 6 7 | eqeltrdi | |- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u B ) , -u B , 0 ) ) ) e. RR ) |
| 9 | 8 | biantrud | |- ( ph -> ( ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) ) e. RR ) <-> ( ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) ) e. RR ) /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u B ) , -u B , 0 ) ) ) e. RR ) ) ) |
| 10 | 2 | ex | |- ( ph -> ( x e. A -> 0 <_ B ) ) |
| 11 | 10 | pm4.71rd | |- ( ph -> ( x e. A <-> ( 0 <_ B /\ x e. A ) ) ) |
| 12 | ancom | |- ( ( 0 <_ B /\ x e. A ) <-> ( x e. A /\ 0 <_ B ) ) |
|
| 13 | 11 12 | bitr2di | |- ( ph -> ( ( x e. A /\ 0 <_ B ) <-> x e. A ) ) |
| 14 | 13 | ifbid | |- ( ph -> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) = if ( x e. A , B , 0 ) ) |
| 15 | 14 | mpteq2dv | |- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) = ( x e. RR |-> if ( x e. A , B , 0 ) ) ) |
| 16 | 15 | fveq2d | |- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) |
| 17 | 16 | eleq1d | |- ( ph -> ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) ) e. RR <-> ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) |
| 18 | 17 | anbi2d | |- ( ph -> ( ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) ) e. RR ) <-> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) ) |
| 19 | 5 9 18 | 3bitr2d | |- ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) ) |