This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Approximate equality of integrals. If F = G for almost all x , then S.2 F = S.2 G . (Contributed by Mario Carneiro, 12-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2lea.1 | |- ( ph -> F : RR --> ( 0 [,] +oo ) ) |
|
| itg2lea.2 | |- ( ph -> G : RR --> ( 0 [,] +oo ) ) |
||
| itg2lea.3 | |- ( ph -> A C_ RR ) |
||
| itg2lea.4 | |- ( ph -> ( vol* ` A ) = 0 ) |
||
| itg2eqa.5 | |- ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) = ( G ` x ) ) |
||
| Assertion | itg2eqa | |- ( ph -> ( S.2 ` F ) = ( S.2 ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2lea.1 | |- ( ph -> F : RR --> ( 0 [,] +oo ) ) |
|
| 2 | itg2lea.2 | |- ( ph -> G : RR --> ( 0 [,] +oo ) ) |
|
| 3 | itg2lea.3 | |- ( ph -> A C_ RR ) |
|
| 4 | itg2lea.4 | |- ( ph -> ( vol* ` A ) = 0 ) |
|
| 5 | itg2eqa.5 | |- ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) = ( G ` x ) ) |
|
| 6 | itg2cl | |- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) e. RR* ) |
|
| 7 | 1 6 | syl | |- ( ph -> ( S.2 ` F ) e. RR* ) |
| 8 | itg2cl | |- ( G : RR --> ( 0 [,] +oo ) -> ( S.2 ` G ) e. RR* ) |
|
| 9 | 2 8 | syl | |- ( ph -> ( S.2 ` G ) e. RR* ) |
| 10 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 11 | eldifi | |- ( x e. ( RR \ A ) -> x e. RR ) |
|
| 12 | ffvelcdm | |- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( F ` x ) e. ( 0 [,] +oo ) ) |
|
| 13 | 1 11 12 | syl2an | |- ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) e. ( 0 [,] +oo ) ) |
| 14 | 10 13 | sselid | |- ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) e. RR* ) |
| 15 | 14 | xrleidd | |- ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) <_ ( F ` x ) ) |
| 16 | 15 5 | breqtrd | |- ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) <_ ( G ` x ) ) |
| 17 | 1 2 3 4 16 | itg2lea | |- ( ph -> ( S.2 ` F ) <_ ( S.2 ` G ) ) |
| 18 | 5 15 | eqbrtrrd | |- ( ( ph /\ x e. ( RR \ A ) ) -> ( G ` x ) <_ ( F ` x ) ) |
| 19 | 2 1 3 4 18 | itg2lea | |- ( ph -> ( S.2 ` G ) <_ ( S.2 ` F ) ) |
| 20 | 7 9 17 19 | xrletrid | |- ( ph -> ( S.2 ` F ) = ( S.2 ` G ) ) |