This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer a transitivity law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caofref.1 | |- ( ph -> A e. V ) |
|
| caofref.2 | |- ( ph -> F : A --> S ) |
||
| caofcom.3 | |- ( ph -> G : A --> S ) |
||
| caofass.4 | |- ( ph -> H : A --> S ) |
||
| caoftrn.5 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x R y /\ y T z ) -> x U z ) ) |
||
| Assertion | caoftrn | |- ( ph -> ( ( F oR R G /\ G oR T H ) -> F oR U H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 | |- ( ph -> A e. V ) |
|
| 2 | caofref.2 | |- ( ph -> F : A --> S ) |
|
| 3 | caofcom.3 | |- ( ph -> G : A --> S ) |
|
| 4 | caofass.4 | |- ( ph -> H : A --> S ) |
|
| 5 | caoftrn.5 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x R y /\ y T z ) -> x U z ) ) |
|
| 6 | 5 | ralrimivvva | |- ( ph -> A. x e. S A. y e. S A. z e. S ( ( x R y /\ y T z ) -> x U z ) ) |
| 7 | 6 | adantr | |- ( ( ph /\ w e. A ) -> A. x e. S A. y e. S A. z e. S ( ( x R y /\ y T z ) -> x U z ) ) |
| 8 | 2 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( F ` w ) e. S ) |
| 9 | 3 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( G ` w ) e. S ) |
| 10 | 4 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( H ` w ) e. S ) |
| 11 | breq1 | |- ( x = ( F ` w ) -> ( x R y <-> ( F ` w ) R y ) ) |
|
| 12 | 11 | anbi1d | |- ( x = ( F ` w ) -> ( ( x R y /\ y T z ) <-> ( ( F ` w ) R y /\ y T z ) ) ) |
| 13 | breq1 | |- ( x = ( F ` w ) -> ( x U z <-> ( F ` w ) U z ) ) |
|
| 14 | 12 13 | imbi12d | |- ( x = ( F ` w ) -> ( ( ( x R y /\ y T z ) -> x U z ) <-> ( ( ( F ` w ) R y /\ y T z ) -> ( F ` w ) U z ) ) ) |
| 15 | breq2 | |- ( y = ( G ` w ) -> ( ( F ` w ) R y <-> ( F ` w ) R ( G ` w ) ) ) |
|
| 16 | breq1 | |- ( y = ( G ` w ) -> ( y T z <-> ( G ` w ) T z ) ) |
|
| 17 | 15 16 | anbi12d | |- ( y = ( G ` w ) -> ( ( ( F ` w ) R y /\ y T z ) <-> ( ( F ` w ) R ( G ` w ) /\ ( G ` w ) T z ) ) ) |
| 18 | 17 | imbi1d | |- ( y = ( G ` w ) -> ( ( ( ( F ` w ) R y /\ y T z ) -> ( F ` w ) U z ) <-> ( ( ( F ` w ) R ( G ` w ) /\ ( G ` w ) T z ) -> ( F ` w ) U z ) ) ) |
| 19 | breq2 | |- ( z = ( H ` w ) -> ( ( G ` w ) T z <-> ( G ` w ) T ( H ` w ) ) ) |
|
| 20 | 19 | anbi2d | |- ( z = ( H ` w ) -> ( ( ( F ` w ) R ( G ` w ) /\ ( G ` w ) T z ) <-> ( ( F ` w ) R ( G ` w ) /\ ( G ` w ) T ( H ` w ) ) ) ) |
| 21 | breq2 | |- ( z = ( H ` w ) -> ( ( F ` w ) U z <-> ( F ` w ) U ( H ` w ) ) ) |
|
| 22 | 20 21 | imbi12d | |- ( z = ( H ` w ) -> ( ( ( ( F ` w ) R ( G ` w ) /\ ( G ` w ) T z ) -> ( F ` w ) U z ) <-> ( ( ( F ` w ) R ( G ` w ) /\ ( G ` w ) T ( H ` w ) ) -> ( F ` w ) U ( H ` w ) ) ) ) |
| 23 | 14 18 22 | rspc3v | |- ( ( ( F ` w ) e. S /\ ( G ` w ) e. S /\ ( H ` w ) e. S ) -> ( A. x e. S A. y e. S A. z e. S ( ( x R y /\ y T z ) -> x U z ) -> ( ( ( F ` w ) R ( G ` w ) /\ ( G ` w ) T ( H ` w ) ) -> ( F ` w ) U ( H ` w ) ) ) ) |
| 24 | 8 9 10 23 | syl3anc | |- ( ( ph /\ w e. A ) -> ( A. x e. S A. y e. S A. z e. S ( ( x R y /\ y T z ) -> x U z ) -> ( ( ( F ` w ) R ( G ` w ) /\ ( G ` w ) T ( H ` w ) ) -> ( F ` w ) U ( H ` w ) ) ) ) |
| 25 | 7 24 | mpd | |- ( ( ph /\ w e. A ) -> ( ( ( F ` w ) R ( G ` w ) /\ ( G ` w ) T ( H ` w ) ) -> ( F ` w ) U ( H ` w ) ) ) |
| 26 | 25 | ralimdva | |- ( ph -> ( A. w e. A ( ( F ` w ) R ( G ` w ) /\ ( G ` w ) T ( H ` w ) ) -> A. w e. A ( F ` w ) U ( H ` w ) ) ) |
| 27 | 2 | ffnd | |- ( ph -> F Fn A ) |
| 28 | 3 | ffnd | |- ( ph -> G Fn A ) |
| 29 | inidm | |- ( A i^i A ) = A |
|
| 30 | eqidd | |- ( ( ph /\ w e. A ) -> ( F ` w ) = ( F ` w ) ) |
|
| 31 | eqidd | |- ( ( ph /\ w e. A ) -> ( G ` w ) = ( G ` w ) ) |
|
| 32 | 27 28 1 1 29 30 31 | ofrfval | |- ( ph -> ( F oR R G <-> A. w e. A ( F ` w ) R ( G ` w ) ) ) |
| 33 | 4 | ffnd | |- ( ph -> H Fn A ) |
| 34 | eqidd | |- ( ( ph /\ w e. A ) -> ( H ` w ) = ( H ` w ) ) |
|
| 35 | 28 33 1 1 29 31 34 | ofrfval | |- ( ph -> ( G oR T H <-> A. w e. A ( G ` w ) T ( H ` w ) ) ) |
| 36 | 32 35 | anbi12d | |- ( ph -> ( ( F oR R G /\ G oR T H ) <-> ( A. w e. A ( F ` w ) R ( G ` w ) /\ A. w e. A ( G ` w ) T ( H ` w ) ) ) ) |
| 37 | r19.26 | |- ( A. w e. A ( ( F ` w ) R ( G ` w ) /\ ( G ` w ) T ( H ` w ) ) <-> ( A. w e. A ( F ` w ) R ( G ` w ) /\ A. w e. A ( G ` w ) T ( H ` w ) ) ) |
|
| 38 | 36 37 | bitr4di | |- ( ph -> ( ( F oR R G /\ G oR T H ) <-> A. w e. A ( ( F ` w ) R ( G ` w ) /\ ( G ` w ) T ( H ` w ) ) ) ) |
| 39 | 27 33 1 1 29 30 34 | ofrfval | |- ( ph -> ( F oR U H <-> A. w e. A ( F ` w ) U ( H ` w ) ) ) |
| 40 | 26 38 39 | 3imtr4d | |- ( ph -> ( ( F oR R G /\ G oR T H ) -> F oR U H ) ) |