This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fimacnvdisj | |- ( ( F : A --> B /\ ( B i^i C ) = (/) ) -> ( `' F " C ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn | |- ran F = dom `' F |
|
| 2 | frn | |- ( F : A --> B -> ran F C_ B ) |
|
| 3 | 2 | adantr | |- ( ( F : A --> B /\ ( B i^i C ) = (/) ) -> ran F C_ B ) |
| 4 | 1 3 | eqsstrrid | |- ( ( F : A --> B /\ ( B i^i C ) = (/) ) -> dom `' F C_ B ) |
| 5 | ssdisj | |- ( ( dom `' F C_ B /\ ( B i^i C ) = (/) ) -> ( dom `' F i^i C ) = (/) ) |
|
| 6 | 4 5 | sylancom | |- ( ( F : A --> B /\ ( B i^i C ) = (/) ) -> ( dom `' F i^i C ) = (/) ) |
| 7 | imadisj | |- ( ( `' F " C ) = (/) <-> ( dom `' F i^i C ) = (/) ) |
|
| 8 | 6 7 | sylibr | |- ( ( F : A --> B /\ ( B i^i C ) = (/) ) -> ( `' F " C ) = (/) ) |