This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rewrite a conjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifan | |- if ( ( ph /\ ps ) , A , B ) = if ( ph , if ( ps , A , B ) , B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue | |- ( ph -> if ( ph , if ( ps , A , B ) , B ) = if ( ps , A , B ) ) |
|
| 2 | ibar | |- ( ph -> ( ps <-> ( ph /\ ps ) ) ) |
|
| 3 | 2 | ifbid | |- ( ph -> if ( ps , A , B ) = if ( ( ph /\ ps ) , A , B ) ) |
| 4 | 1 3 | eqtr2d | |- ( ph -> if ( ( ph /\ ps ) , A , B ) = if ( ph , if ( ps , A , B ) , B ) ) |
| 5 | simpl | |- ( ( ph /\ ps ) -> ph ) |
|
| 6 | 5 | con3i | |- ( -. ph -> -. ( ph /\ ps ) ) |
| 7 | 6 | iffalsed | |- ( -. ph -> if ( ( ph /\ ps ) , A , B ) = B ) |
| 8 | iffalse | |- ( -. ph -> if ( ph , if ( ps , A , B ) , B ) = B ) |
|
| 9 | 7 8 | eqtr4d | |- ( -. ph -> if ( ( ph /\ ps ) , A , B ) = if ( ph , if ( ps , A , B ) , B ) ) |
| 10 | 4 9 | pm2.61i | |- if ( ( ph /\ ps ) , A , B ) = if ( ph , if ( ps , A , B ) , B ) |