This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of zero on any set is zero. (Contributed by Mario Carneiro, 29-Jun-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itgz | |- S. A 0 _d x = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Re ` ( 0 / ( _i ^ k ) ) ) = ( Re ` ( 0 / ( _i ^ k ) ) ) |
|
| 2 | 1 | dfitg | |- S. A 0 _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 3 | ax-icn | |- _i e. CC |
|
| 4 | elfznn0 | |- ( k e. ( 0 ... 3 ) -> k e. NN0 ) |
|
| 5 | expcl | |- ( ( _i e. CC /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) |
|
| 6 | 3 4 5 | sylancr | |- ( k e. ( 0 ... 3 ) -> ( _i ^ k ) e. CC ) |
| 7 | ine0 | |- _i =/= 0 |
|
| 8 | elfzelz | |- ( k e. ( 0 ... 3 ) -> k e. ZZ ) |
|
| 9 | expne0i | |- ( ( _i e. CC /\ _i =/= 0 /\ k e. ZZ ) -> ( _i ^ k ) =/= 0 ) |
|
| 10 | 3 7 8 9 | mp3an12i | |- ( k e. ( 0 ... 3 ) -> ( _i ^ k ) =/= 0 ) |
| 11 | 6 10 | div0d | |- ( k e. ( 0 ... 3 ) -> ( 0 / ( _i ^ k ) ) = 0 ) |
| 12 | 11 | fveq2d | |- ( k e. ( 0 ... 3 ) -> ( Re ` ( 0 / ( _i ^ k ) ) ) = ( Re ` 0 ) ) |
| 13 | re0 | |- ( Re ` 0 ) = 0 |
|
| 14 | 12 13 | eqtrdi | |- ( k e. ( 0 ... 3 ) -> ( Re ` ( 0 / ( _i ^ k ) ) ) = 0 ) |
| 15 | 14 | ifeq1d | |- ( k e. ( 0 ... 3 ) -> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , 0 , 0 ) ) |
| 16 | ifid | |- if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , 0 , 0 ) = 0 |
|
| 17 | 15 16 | eqtrdi | |- ( k e. ( 0 ... 3 ) -> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) = 0 ) |
| 18 | 17 | mpteq2dv | |- ( k e. ( 0 ... 3 ) -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> 0 ) ) |
| 19 | fconstmpt | |- ( RR X. { 0 } ) = ( x e. RR |-> 0 ) |
|
| 20 | 18 19 | eqtr4di | |- ( k e. ( 0 ... 3 ) -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) = ( RR X. { 0 } ) ) |
| 21 | 20 | fveq2d | |- ( k e. ( 0 ... 3 ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( RR X. { 0 } ) ) ) |
| 22 | itg20 | |- ( S.2 ` ( RR X. { 0 } ) ) = 0 |
|
| 23 | 21 22 | eqtrdi | |- ( k e. ( 0 ... 3 ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) = 0 ) |
| 24 | 23 | oveq2d | |- ( k e. ( 0 ... 3 ) -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( _i ^ k ) x. 0 ) ) |
| 25 | 6 | mul01d | |- ( k e. ( 0 ... 3 ) -> ( ( _i ^ k ) x. 0 ) = 0 ) |
| 26 | 24 25 | eqtrd | |- ( k e. ( 0 ... 3 ) -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) ) = 0 ) |
| 27 | 26 | sumeq2i | |- sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) ) = sum_ k e. ( 0 ... 3 ) 0 |
| 28 | fzfi | |- ( 0 ... 3 ) e. Fin |
|
| 29 | 28 | olci | |- ( ( 0 ... 3 ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... 3 ) e. Fin ) |
| 30 | sumz | |- ( ( ( 0 ... 3 ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... 3 ) e. Fin ) -> sum_ k e. ( 0 ... 3 ) 0 = 0 ) |
|
| 31 | 29 30 | ax-mp | |- sum_ k e. ( 0 ... 3 ) 0 = 0 |
| 32 | 2 27 31 | 3eqtri | |- S. A 0 _d x = 0 |