This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple pseudograph, for each indexed edge there is exactly one edge. (Contributed by AV, 20-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgredgiedg.e | |- E = ( Edg ` G ) |
|
| uspgredgiedg.i | |- I = ( iEdg ` G ) |
||
| Assertion | uspgriedgedg | |- ( ( G e. USPGraph /\ X e. dom I ) -> E! k e. E k = ( I ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgredgiedg.e | |- E = ( Edg ` G ) |
|
| 2 | uspgredgiedg.i | |- I = ( iEdg ` G ) |
|
| 3 | 2 | uspgrf1oedg | |- ( G e. USPGraph -> I : dom I -1-1-onto-> ( Edg ` G ) ) |
| 4 | f1of | |- ( I : dom I -1-1-onto-> ( Edg ` G ) -> I : dom I --> ( Edg ` G ) ) |
|
| 5 | 3 4 | syl | |- ( G e. USPGraph -> I : dom I --> ( Edg ` G ) ) |
| 6 | feq3 | |- ( E = ( Edg ` G ) -> ( I : dom I --> E <-> I : dom I --> ( Edg ` G ) ) ) |
|
| 7 | 1 6 | ax-mp | |- ( I : dom I --> E <-> I : dom I --> ( Edg ` G ) ) |
| 8 | 5 7 | sylibr | |- ( G e. USPGraph -> I : dom I --> E ) |
| 9 | fdmeu | |- ( ( I : dom I --> E /\ X e. dom I ) -> E! k e. E ( I ` X ) = k ) |
|
| 10 | 8 9 | sylan | |- ( ( G e. USPGraph /\ X e. dom I ) -> E! k e. E ( I ` X ) = k ) |
| 11 | eqcom | |- ( k = ( I ` X ) <-> ( I ` X ) = k ) |
|
| 12 | 11 | reubii | |- ( E! k e. E k = ( I ` X ) <-> E! k e. E ( I ` X ) = k ) |
| 13 | 10 12 | sylibr | |- ( ( G e. USPGraph /\ X e. dom I ) -> E! k e. E k = ( I ` X ) ) |