This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a function to a subclass of its domain as a function with domain and codomain. (Contributed by AV, 13-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fssrescdmd.f | |- ( ph -> F : A --> B ) |
|
| fssrescdmd.c | |- ( ph -> C C_ A ) |
||
| fssrescdmd.d | |- ( ph -> ( F " C ) C_ D ) |
||
| Assertion | fssrescdmd | |- ( ph -> ( F |` C ) : C --> D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssrescdmd.f | |- ( ph -> F : A --> B ) |
|
| 2 | fssrescdmd.c | |- ( ph -> C C_ A ) |
|
| 3 | fssrescdmd.d | |- ( ph -> ( F " C ) C_ D ) |
|
| 4 | 1 | ffnd | |- ( ph -> F Fn A ) |
| 5 | 4 2 | fnssresd | |- ( ph -> ( F |` C ) Fn C ) |
| 6 | resima | |- ( ( F |` C ) " C ) = ( F " C ) |
|
| 7 | 6 3 | eqsstrid | |- ( ph -> ( ( F |` C ) " C ) C_ D ) |
| 8 | 1 | ffund | |- ( ph -> Fun F ) |
| 9 | 8 | funresd | |- ( ph -> Fun ( F |` C ) ) |
| 10 | 1 | fdmd | |- ( ph -> dom F = A ) |
| 11 | 2 10 | sseqtrrd | |- ( ph -> C C_ dom F ) |
| 12 | ssdmres | |- ( C C_ dom F <-> dom ( F |` C ) = C ) |
|
| 13 | 12 | a1i | |- ( ph -> ( C C_ dom F <-> dom ( F |` C ) = C ) ) |
| 14 | eqcom | |- ( dom ( F |` C ) = C <-> C = dom ( F |` C ) ) |
|
| 15 | 13 14 | bitrdi | |- ( ph -> ( C C_ dom F <-> C = dom ( F |` C ) ) ) |
| 16 | 11 15 | mpbid | |- ( ph -> C = dom ( F |` C ) ) |
| 17 | 16 | eqimssd | |- ( ph -> C C_ dom ( F |` C ) ) |
| 18 | funimass4 | |- ( ( Fun ( F |` C ) /\ C C_ dom ( F |` C ) ) -> ( ( ( F |` C ) " C ) C_ D <-> A. x e. C ( ( F |` C ) ` x ) e. D ) ) |
|
| 19 | 9 17 18 | syl2anc | |- ( ph -> ( ( ( F |` C ) " C ) C_ D <-> A. x e. C ( ( F |` C ) ` x ) e. D ) ) |
| 20 | 7 19 | mpbid | |- ( ph -> A. x e. C ( ( F |` C ) ` x ) e. D ) |
| 21 | ffnfv | |- ( ( F |` C ) : C --> D <-> ( ( F |` C ) Fn C /\ A. x e. C ( ( F |` C ) ` x ) e. D ) ) |
|
| 22 | 5 20 21 | sylanbrc | |- ( ph -> ( F |` C ) : C --> D ) |