This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resdmres | |- ( A |` dom ( A |` B ) ) = ( A |` B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in12 | |- ( A i^i ( ( B X. _V ) i^i ( dom A X. _V ) ) ) = ( ( B X. _V ) i^i ( A i^i ( dom A X. _V ) ) ) |
|
| 2 | df-res | |- ( A |` dom A ) = ( A i^i ( dom A X. _V ) ) |
|
| 3 | resdm2 | |- ( A |` dom A ) = `' `' A |
|
| 4 | 2 3 | eqtr3i | |- ( A i^i ( dom A X. _V ) ) = `' `' A |
| 5 | 4 | ineq2i | |- ( ( B X. _V ) i^i ( A i^i ( dom A X. _V ) ) ) = ( ( B X. _V ) i^i `' `' A ) |
| 6 | incom | |- ( ( B X. _V ) i^i `' `' A ) = ( `' `' A i^i ( B X. _V ) ) |
|
| 7 | 1 5 6 | 3eqtri | |- ( A i^i ( ( B X. _V ) i^i ( dom A X. _V ) ) ) = ( `' `' A i^i ( B X. _V ) ) |
| 8 | df-res | |- ( A |` dom ( A |` B ) ) = ( A i^i ( dom ( A |` B ) X. _V ) ) |
|
| 9 | dmres | |- dom ( A |` B ) = ( B i^i dom A ) |
|
| 10 | 9 | xpeq1i | |- ( dom ( A |` B ) X. _V ) = ( ( B i^i dom A ) X. _V ) |
| 11 | xpindir | |- ( ( B i^i dom A ) X. _V ) = ( ( B X. _V ) i^i ( dom A X. _V ) ) |
|
| 12 | 10 11 | eqtri | |- ( dom ( A |` B ) X. _V ) = ( ( B X. _V ) i^i ( dom A X. _V ) ) |
| 13 | 12 | ineq2i | |- ( A i^i ( dom ( A |` B ) X. _V ) ) = ( A i^i ( ( B X. _V ) i^i ( dom A X. _V ) ) ) |
| 14 | 8 13 | eqtri | |- ( A |` dom ( A |` B ) ) = ( A i^i ( ( B X. _V ) i^i ( dom A X. _V ) ) ) |
| 15 | df-res | |- ( `' `' A |` B ) = ( `' `' A i^i ( B X. _V ) ) |
|
| 16 | 7 14 15 | 3eqtr4i | |- ( A |` dom ( A |` B ) ) = ( `' `' A |` B ) |
| 17 | rescnvcnv | |- ( `' `' A |` B ) = ( A |` B ) |
|
| 18 | 16 17 | eqtri | |- ( A |` dom ( A |` B ) ) = ( A |` B ) |