This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isridlrng.u | |- U = ( LIdeal ` ( oppR ` R ) ) |
|
| isridlrng.b | |- B = ( Base ` R ) |
||
| isridlrng.t | |- .x. = ( .r ` R ) |
||
| Assertion | isridlrng | |- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( I e. U <-> A. x e. B A. y e. I ( y .x. x ) e. I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isridlrng.u | |- U = ( LIdeal ` ( oppR ` R ) ) |
|
| 2 | isridlrng.b | |- B = ( Base ` R ) |
|
| 3 | isridlrng.t | |- .x. = ( .r ` R ) |
|
| 4 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 5 | 4 | opprrng | |- ( R e. Rng -> ( oppR ` R ) e. Rng ) |
| 6 | 4 | opprsubg | |- ( SubGrp ` R ) = ( SubGrp ` ( oppR ` R ) ) |
| 7 | 6 | a1i | |- ( R e. Rng -> ( SubGrp ` R ) = ( SubGrp ` ( oppR ` R ) ) ) |
| 8 | 7 | eleq2d | |- ( R e. Rng -> ( I e. ( SubGrp ` R ) <-> I e. ( SubGrp ` ( oppR ` R ) ) ) ) |
| 9 | 8 | biimpa | |- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> I e. ( SubGrp ` ( oppR ` R ) ) ) |
| 10 | 4 2 | opprbas | |- B = ( Base ` ( oppR ` R ) ) |
| 11 | eqid | |- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
|
| 12 | 1 10 11 | dflidl2rng | |- ( ( ( oppR ` R ) e. Rng /\ I e. ( SubGrp ` ( oppR ` R ) ) ) -> ( I e. U <-> A. x e. B A. y e. I ( x ( .r ` ( oppR ` R ) ) y ) e. I ) ) |
| 13 | 5 9 12 | syl2an2r | |- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( I e. U <-> A. x e. B A. y e. I ( x ( .r ` ( oppR ` R ) ) y ) e. I ) ) |
| 14 | 2 3 4 11 | opprmul | |- ( x ( .r ` ( oppR ` R ) ) y ) = ( y .x. x ) |
| 15 | 14 | eleq1i | |- ( ( x ( .r ` ( oppR ` R ) ) y ) e. I <-> ( y .x. x ) e. I ) |
| 16 | 15 | a1i | |- ( ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ x e. B ) /\ y e. I ) -> ( ( x ( .r ` ( oppR ` R ) ) y ) e. I <-> ( y .x. x ) e. I ) ) |
| 17 | 16 | ralbidva | |- ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ x e. B ) -> ( A. y e. I ( x ( .r ` ( oppR ` R ) ) y ) e. I <-> A. y e. I ( y .x. x ) e. I ) ) |
| 18 | 17 | ralbidva | |- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( A. x e. B A. y e. I ( x ( .r ` ( oppR ` R ) ) y ) e. I <-> A. x e. B A. y e. I ( y .x. x ) e. I ) ) |
| 19 | 13 18 | bitrd | |- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( I e. U <-> A. x e. B A. y e. I ( y .x. x ) e. I ) ) |