This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dflidl2rng.u | |- U = ( LIdeal ` R ) |
|
| dflidl2rng.b | |- B = ( Base ` R ) |
||
| dflidl2rng.t | |- .x. = ( .r ` R ) |
||
| Assertion | dflidl2rng | |- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( I e. U <-> A. x e. B A. y e. I ( x .x. y ) e. I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dflidl2rng.u | |- U = ( LIdeal ` R ) |
|
| 2 | dflidl2rng.b | |- B = ( Base ` R ) |
|
| 3 | dflidl2rng.t | |- .x. = ( .r ` R ) |
|
| 4 | simpll | |- ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ I e. U ) -> R e. Rng ) |
|
| 5 | simpr | |- ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ I e. U ) -> I e. U ) |
|
| 6 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 7 | 6 | subg0cl | |- ( I e. ( SubGrp ` R ) -> ( 0g ` R ) e. I ) |
| 8 | 7 | ad2antlr | |- ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ I e. U ) -> ( 0g ` R ) e. I ) |
| 9 | 4 5 8 | 3jca | |- ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ I e. U ) -> ( R e. Rng /\ I e. U /\ ( 0g ` R ) e. I ) ) |
| 10 | 6 2 3 1 | rnglidlmcl | |- ( ( ( R e. Rng /\ I e. U /\ ( 0g ` R ) e. I ) /\ ( x e. B /\ y e. I ) ) -> ( x .x. y ) e. I ) |
| 11 | 9 10 | sylan | |- ( ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ I e. U ) /\ ( x e. B /\ y e. I ) ) -> ( x .x. y ) e. I ) |
| 12 | 11 | ralrimivva | |- ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ I e. U ) -> A. x e. B A. y e. I ( x .x. y ) e. I ) |
| 13 | 2 | subgss | |- ( I e. ( SubGrp ` R ) -> I C_ B ) |
| 14 | 13 | ad2antlr | |- ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ A. x e. B A. y e. I ( x .x. y ) e. I ) -> I C_ B ) |
| 15 | 7 | ne0d | |- ( I e. ( SubGrp ` R ) -> I =/= (/) ) |
| 16 | 15 | ad2antlr | |- ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ A. x e. B A. y e. I ( x .x. y ) e. I ) -> I =/= (/) ) |
| 17 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 18 | 17 | subgcl | |- ( ( I e. ( SubGrp ` R ) /\ ( x .x. y ) e. I /\ z e. I ) -> ( ( x .x. y ) ( +g ` R ) z ) e. I ) |
| 19 | 18 | ad5ant245 | |- ( ( ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ ( x e. B /\ y e. I ) ) /\ ( x .x. y ) e. I ) /\ z e. I ) -> ( ( x .x. y ) ( +g ` R ) z ) e. I ) |
| 20 | 19 | ralrimiva | |- ( ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ ( x e. B /\ y e. I ) ) /\ ( x .x. y ) e. I ) -> A. z e. I ( ( x .x. y ) ( +g ` R ) z ) e. I ) |
| 21 | 20 | ex | |- ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ ( x e. B /\ y e. I ) ) -> ( ( x .x. y ) e. I -> A. z e. I ( ( x .x. y ) ( +g ` R ) z ) e. I ) ) |
| 22 | 21 | ralimdvva | |- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( A. x e. B A. y e. I ( x .x. y ) e. I -> A. x e. B A. y e. I A. z e. I ( ( x .x. y ) ( +g ` R ) z ) e. I ) ) |
| 23 | 22 | imp | |- ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ A. x e. B A. y e. I ( x .x. y ) e. I ) -> A. x e. B A. y e. I A. z e. I ( ( x .x. y ) ( +g ` R ) z ) e. I ) |
| 24 | 1 2 17 3 | islidl | |- ( I e. U <-> ( I C_ B /\ I =/= (/) /\ A. x e. B A. y e. I A. z e. I ( ( x .x. y ) ( +g ` R ) z ) e. I ) ) |
| 25 | 14 16 23 24 | syl3anbrc | |- ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ A. x e. B A. y e. I ( x .x. y ) e. I ) -> I e. U ) |
| 26 | 12 25 | impbida | |- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( I e. U <-> A. x e. B A. y e. I ( x .x. y ) e. I ) ) |