This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017) Removed redundant hypotheses. (Revised by Zhi Wang, 27-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | |- B = ( Base ` C ) |
|
| invfval.n | |- N = ( Inv ` C ) |
||
| invfval.c | |- ( ph -> C e. Cat ) |
||
| invffval.s | |- S = ( Sect ` C ) |
||
| Assertion | invffval | |- ( ph -> N = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | |- B = ( Base ` C ) |
|
| 2 | invfval.n | |- N = ( Inv ` C ) |
|
| 3 | invfval.c | |- ( ph -> C e. Cat ) |
|
| 4 | invffval.s | |- S = ( Sect ` C ) |
|
| 5 | fveq2 | |- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
|
| 6 | 5 1 | eqtr4di | |- ( c = C -> ( Base ` c ) = B ) |
| 7 | fveq2 | |- ( c = C -> ( Sect ` c ) = ( Sect ` C ) ) |
|
| 8 | 7 4 | eqtr4di | |- ( c = C -> ( Sect ` c ) = S ) |
| 9 | 8 | oveqd | |- ( c = C -> ( x ( Sect ` c ) y ) = ( x S y ) ) |
| 10 | 8 | oveqd | |- ( c = C -> ( y ( Sect ` c ) x ) = ( y S x ) ) |
| 11 | 10 | cnveqd | |- ( c = C -> `' ( y ( Sect ` c ) x ) = `' ( y S x ) ) |
| 12 | 9 11 | ineq12d | |- ( c = C -> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) = ( ( x S y ) i^i `' ( y S x ) ) ) |
| 13 | 6 6 12 | mpoeq123dv | |- ( c = C -> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) |
| 14 | df-inv | |- Inv = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) ) |
|
| 15 | 1 | fvexi | |- B e. _V |
| 16 | 15 15 | mpoex | |- ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) e. _V |
| 17 | 13 14 16 | fvmpt | |- ( C e. Cat -> ( Inv ` C ) = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) |
| 18 | 3 17 | syl | |- ( ph -> ( Inv ` C ) = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) |
| 19 | 2 18 | eqtrid | |- ( ph -> N = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) |