This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value of the function returning the isomorphisms of a category. (Contributed by AV, 5-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isofval | |- ( C e. Cat -> ( Iso ` C ) = ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iso | |- Iso = ( c e. Cat |-> ( ( x e. _V |-> dom x ) o. ( Inv ` c ) ) ) |
|
| 2 | fveq2 | |- ( c = C -> ( Inv ` c ) = ( Inv ` C ) ) |
|
| 3 | 2 | coeq2d | |- ( c = C -> ( ( x e. _V |-> dom x ) o. ( Inv ` c ) ) = ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) ) |
| 4 | id | |- ( C e. Cat -> C e. Cat ) |
|
| 5 | funmpt | |- Fun ( x e. _V |-> dom x ) |
|
| 6 | fvexd | |- ( C e. Cat -> ( Inv ` C ) e. _V ) |
|
| 7 | cofunexg | |- ( ( Fun ( x e. _V |-> dom x ) /\ ( Inv ` C ) e. _V ) -> ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) e. _V ) |
|
| 8 | 5 6 7 | sylancr | |- ( C e. Cat -> ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) e. _V ) |
| 9 | 1 3 4 8 | fvmptd3 | |- ( C e. Cat -> ( Iso ` C ) = ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) ) |