This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfse2 | |- ( R Se A <-> A. x e. A ( A i^i ( `' R " { x } ) ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-se | |- ( R Se A <-> A. x e. A { y e. A | y R x } e. _V ) |
|
| 2 | dfrab3 | |- { y e. A | y R x } = ( A i^i { y | y R x } ) |
|
| 3 | iniseg | |- ( x e. _V -> ( `' R " { x } ) = { y | y R x } ) |
|
| 4 | 3 | elv | |- ( `' R " { x } ) = { y | y R x } |
| 5 | 4 | ineq2i | |- ( A i^i ( `' R " { x } ) ) = ( A i^i { y | y R x } ) |
| 6 | 2 5 | eqtr4i | |- { y e. A | y R x } = ( A i^i ( `' R " { x } ) ) |
| 7 | 6 | eleq1i | |- ( { y e. A | y R x } e. _V <-> ( A i^i ( `' R " { x } ) ) e. _V ) |
| 8 | 7 | ralbii | |- ( A. x e. A { y e. A | y R x } e. _V <-> A. x e. A ( A i^i ( `' R " { x } ) ) e. _V ) |
| 9 | 1 8 | bitri | |- ( R Se A <-> A. x e. A ( A i^i ( `' R " { x } ) ) e. _V ) |