This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isose | |- ( H Isom R , S ( A , B ) -> ( R Se A <-> S Se B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( H Isom R , S ( A , B ) -> H Isom R , S ( A , B ) ) |
|
| 2 | isof1o | |- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
|
| 3 | f1ofun | |- ( H : A -1-1-onto-> B -> Fun H ) |
|
| 4 | vex | |- x e. _V |
|
| 5 | 4 | funimaex | |- ( Fun H -> ( H " x ) e. _V ) |
| 6 | 2 3 5 | 3syl | |- ( H Isom R , S ( A , B ) -> ( H " x ) e. _V ) |
| 7 | 1 6 | isoselem | |- ( H Isom R , S ( A , B ) -> ( R Se A -> S Se B ) ) |
| 8 | isocnv | |- ( H Isom R , S ( A , B ) -> `' H Isom S , R ( B , A ) ) |
|
| 9 | isof1o | |- ( `' H Isom S , R ( B , A ) -> `' H : B -1-1-onto-> A ) |
|
| 10 | f1ofun | |- ( `' H : B -1-1-onto-> A -> Fun `' H ) |
|
| 11 | 4 | funimaex | |- ( Fun `' H -> ( `' H " x ) e. _V ) |
| 12 | 8 9 10 11 | 4syl | |- ( H Isom R , S ( A , B ) -> ( `' H " x ) e. _V ) |
| 13 | 8 12 | isoselem | |- ( H Isom R , S ( A , B ) -> ( S Se B -> R Se A ) ) |
| 14 | 7 13 | impbid | |- ( H Isom R , S ( A , B ) -> ( R Se A <-> S Se B ) ) |