This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islmod.v | |- V = ( Base ` W ) |
|
| islmod.a | |- .+ = ( +g ` W ) |
||
| islmod.s | |- .x. = ( .s ` W ) |
||
| islmod.f | |- F = ( Scalar ` W ) |
||
| islmod.k | |- K = ( Base ` F ) |
||
| islmod.p | |- .+^ = ( +g ` F ) |
||
| islmod.t | |- .X. = ( .r ` F ) |
||
| islmod.u | |- .1. = ( 1r ` F ) |
||
| Assertion | lmodlema | |- ( ( W e. LMod /\ ( Q e. K /\ R e. K ) /\ ( X e. V /\ Y e. V ) ) -> ( ( ( R .x. Y ) e. V /\ ( R .x. ( Y .+ X ) ) = ( ( R .x. Y ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. Y ) = ( ( Q .x. Y ) .+ ( R .x. Y ) ) ) /\ ( ( ( Q .X. R ) .x. Y ) = ( Q .x. ( R .x. Y ) ) /\ ( .1. .x. Y ) = Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmod.v | |- V = ( Base ` W ) |
|
| 2 | islmod.a | |- .+ = ( +g ` W ) |
|
| 3 | islmod.s | |- .x. = ( .s ` W ) |
|
| 4 | islmod.f | |- F = ( Scalar ` W ) |
|
| 5 | islmod.k | |- K = ( Base ` F ) |
|
| 6 | islmod.p | |- .+^ = ( +g ` F ) |
|
| 7 | islmod.t | |- .X. = ( .r ` F ) |
|
| 8 | islmod.u | |- .1. = ( 1r ` F ) |
|
| 9 | 1 2 3 4 5 6 7 8 | islmod | |- ( W e. LMod <-> ( W e. Grp /\ F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 10 | 9 | simp3bi | |- ( W e. LMod -> A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) |
| 11 | oveq1 | |- ( q = Q -> ( q .+^ r ) = ( Q .+^ r ) ) |
|
| 12 | 11 | oveq1d | |- ( q = Q -> ( ( q .+^ r ) .x. w ) = ( ( Q .+^ r ) .x. w ) ) |
| 13 | oveq1 | |- ( q = Q -> ( q .x. w ) = ( Q .x. w ) ) |
|
| 14 | 13 | oveq1d | |- ( q = Q -> ( ( q .x. w ) .+ ( r .x. w ) ) = ( ( Q .x. w ) .+ ( r .x. w ) ) ) |
| 15 | 12 14 | eqeq12d | |- ( q = Q -> ( ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) <-> ( ( Q .+^ r ) .x. w ) = ( ( Q .x. w ) .+ ( r .x. w ) ) ) ) |
| 16 | 15 | 3anbi3d | |- ( q = Q -> ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) <-> ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( Q .+^ r ) .x. w ) = ( ( Q .x. w ) .+ ( r .x. w ) ) ) ) ) |
| 17 | oveq1 | |- ( q = Q -> ( q .X. r ) = ( Q .X. r ) ) |
|
| 18 | 17 | oveq1d | |- ( q = Q -> ( ( q .X. r ) .x. w ) = ( ( Q .X. r ) .x. w ) ) |
| 19 | oveq1 | |- ( q = Q -> ( q .x. ( r .x. w ) ) = ( Q .x. ( r .x. w ) ) ) |
|
| 20 | 18 19 | eqeq12d | |- ( q = Q -> ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) <-> ( ( Q .X. r ) .x. w ) = ( Q .x. ( r .x. w ) ) ) ) |
| 21 | 20 | anbi1d | |- ( q = Q -> ( ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) <-> ( ( ( Q .X. r ) .x. w ) = ( Q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) |
| 22 | 16 21 | anbi12d | |- ( q = Q -> ( ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) <-> ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( Q .+^ r ) .x. w ) = ( ( Q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( Q .X. r ) .x. w ) = ( Q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 23 | 22 | 2ralbidv | |- ( q = Q -> ( A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) <-> A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( Q .+^ r ) .x. w ) = ( ( Q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( Q .X. r ) .x. w ) = ( Q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 24 | oveq1 | |- ( r = R -> ( r .x. w ) = ( R .x. w ) ) |
|
| 25 | 24 | eleq1d | |- ( r = R -> ( ( r .x. w ) e. V <-> ( R .x. w ) e. V ) ) |
| 26 | oveq1 | |- ( r = R -> ( r .x. ( w .+ x ) ) = ( R .x. ( w .+ x ) ) ) |
|
| 27 | oveq1 | |- ( r = R -> ( r .x. x ) = ( R .x. x ) ) |
|
| 28 | 24 27 | oveq12d | |- ( r = R -> ( ( r .x. w ) .+ ( r .x. x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) ) |
| 29 | 26 28 | eqeq12d | |- ( r = R -> ( ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) <-> ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) ) ) |
| 30 | oveq2 | |- ( r = R -> ( Q .+^ r ) = ( Q .+^ R ) ) |
|
| 31 | 30 | oveq1d | |- ( r = R -> ( ( Q .+^ r ) .x. w ) = ( ( Q .+^ R ) .x. w ) ) |
| 32 | 24 | oveq2d | |- ( r = R -> ( ( Q .x. w ) .+ ( r .x. w ) ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) |
| 33 | 31 32 | eqeq12d | |- ( r = R -> ( ( ( Q .+^ r ) .x. w ) = ( ( Q .x. w ) .+ ( r .x. w ) ) <-> ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) ) |
| 34 | 25 29 33 | 3anbi123d | |- ( r = R -> ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( Q .+^ r ) .x. w ) = ( ( Q .x. w ) .+ ( r .x. w ) ) ) <-> ( ( R .x. w ) e. V /\ ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) ) ) |
| 35 | oveq2 | |- ( r = R -> ( Q .X. r ) = ( Q .X. R ) ) |
|
| 36 | 35 | oveq1d | |- ( r = R -> ( ( Q .X. r ) .x. w ) = ( ( Q .X. R ) .x. w ) ) |
| 37 | 24 | oveq2d | |- ( r = R -> ( Q .x. ( r .x. w ) ) = ( Q .x. ( R .x. w ) ) ) |
| 38 | 36 37 | eqeq12d | |- ( r = R -> ( ( ( Q .X. r ) .x. w ) = ( Q .x. ( r .x. w ) ) <-> ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) ) ) |
| 39 | 38 | anbi1d | |- ( r = R -> ( ( ( ( Q .X. r ) .x. w ) = ( Q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) <-> ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) |
| 40 | 34 39 | anbi12d | |- ( r = R -> ( ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( Q .+^ r ) .x. w ) = ( ( Q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( Q .X. r ) .x. w ) = ( Q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) <-> ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) /\ ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 41 | 40 | 2ralbidv | |- ( r = R -> ( A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( Q .+^ r ) .x. w ) = ( ( Q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( Q .X. r ) .x. w ) = ( Q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) <-> A. x e. V A. w e. V ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) /\ ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 42 | 23 41 | rspc2v | |- ( ( Q e. K /\ R e. K ) -> ( A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) -> A. x e. V A. w e. V ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) /\ ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 43 | 10 42 | mpan9 | |- ( ( W e. LMod /\ ( Q e. K /\ R e. K ) ) -> A. x e. V A. w e. V ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) /\ ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) |
| 44 | oveq2 | |- ( x = X -> ( w .+ x ) = ( w .+ X ) ) |
|
| 45 | 44 | oveq2d | |- ( x = X -> ( R .x. ( w .+ x ) ) = ( R .x. ( w .+ X ) ) ) |
| 46 | oveq2 | |- ( x = X -> ( R .x. x ) = ( R .x. X ) ) |
|
| 47 | 46 | oveq2d | |- ( x = X -> ( ( R .x. w ) .+ ( R .x. x ) ) = ( ( R .x. w ) .+ ( R .x. X ) ) ) |
| 48 | 45 47 | eqeq12d | |- ( x = X -> ( ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) <-> ( R .x. ( w .+ X ) ) = ( ( R .x. w ) .+ ( R .x. X ) ) ) ) |
| 49 | 48 | 3anbi2d | |- ( x = X -> ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) <-> ( ( R .x. w ) e. V /\ ( R .x. ( w .+ X ) ) = ( ( R .x. w ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) ) ) |
| 50 | 49 | anbi1d | |- ( x = X -> ( ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) /\ ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w ) ) <-> ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ X ) ) = ( ( R .x. w ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) /\ ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 51 | oveq2 | |- ( w = Y -> ( R .x. w ) = ( R .x. Y ) ) |
|
| 52 | 51 | eleq1d | |- ( w = Y -> ( ( R .x. w ) e. V <-> ( R .x. Y ) e. V ) ) |
| 53 | oveq1 | |- ( w = Y -> ( w .+ X ) = ( Y .+ X ) ) |
|
| 54 | 53 | oveq2d | |- ( w = Y -> ( R .x. ( w .+ X ) ) = ( R .x. ( Y .+ X ) ) ) |
| 55 | 51 | oveq1d | |- ( w = Y -> ( ( R .x. w ) .+ ( R .x. X ) ) = ( ( R .x. Y ) .+ ( R .x. X ) ) ) |
| 56 | 54 55 | eqeq12d | |- ( w = Y -> ( ( R .x. ( w .+ X ) ) = ( ( R .x. w ) .+ ( R .x. X ) ) <-> ( R .x. ( Y .+ X ) ) = ( ( R .x. Y ) .+ ( R .x. X ) ) ) ) |
| 57 | oveq2 | |- ( w = Y -> ( ( Q .+^ R ) .x. w ) = ( ( Q .+^ R ) .x. Y ) ) |
|
| 58 | oveq2 | |- ( w = Y -> ( Q .x. w ) = ( Q .x. Y ) ) |
|
| 59 | 58 51 | oveq12d | |- ( w = Y -> ( ( Q .x. w ) .+ ( R .x. w ) ) = ( ( Q .x. Y ) .+ ( R .x. Y ) ) ) |
| 60 | 57 59 | eqeq12d | |- ( w = Y -> ( ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) <-> ( ( Q .+^ R ) .x. Y ) = ( ( Q .x. Y ) .+ ( R .x. Y ) ) ) ) |
| 61 | 52 56 60 | 3anbi123d | |- ( w = Y -> ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ X ) ) = ( ( R .x. w ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) <-> ( ( R .x. Y ) e. V /\ ( R .x. ( Y .+ X ) ) = ( ( R .x. Y ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. Y ) = ( ( Q .x. Y ) .+ ( R .x. Y ) ) ) ) ) |
| 62 | oveq2 | |- ( w = Y -> ( ( Q .X. R ) .x. w ) = ( ( Q .X. R ) .x. Y ) ) |
|
| 63 | 51 | oveq2d | |- ( w = Y -> ( Q .x. ( R .x. w ) ) = ( Q .x. ( R .x. Y ) ) ) |
| 64 | 62 63 | eqeq12d | |- ( w = Y -> ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) <-> ( ( Q .X. R ) .x. Y ) = ( Q .x. ( R .x. Y ) ) ) ) |
| 65 | oveq2 | |- ( w = Y -> ( .1. .x. w ) = ( .1. .x. Y ) ) |
|
| 66 | id | |- ( w = Y -> w = Y ) |
|
| 67 | 65 66 | eqeq12d | |- ( w = Y -> ( ( .1. .x. w ) = w <-> ( .1. .x. Y ) = Y ) ) |
| 68 | 64 67 | anbi12d | |- ( w = Y -> ( ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w ) <-> ( ( ( Q .X. R ) .x. Y ) = ( Q .x. ( R .x. Y ) ) /\ ( .1. .x. Y ) = Y ) ) ) |
| 69 | 61 68 | anbi12d | |- ( w = Y -> ( ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ X ) ) = ( ( R .x. w ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) /\ ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w ) ) <-> ( ( ( R .x. Y ) e. V /\ ( R .x. ( Y .+ X ) ) = ( ( R .x. Y ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. Y ) = ( ( Q .x. Y ) .+ ( R .x. Y ) ) ) /\ ( ( ( Q .X. R ) .x. Y ) = ( Q .x. ( R .x. Y ) ) /\ ( .1. .x. Y ) = Y ) ) ) ) |
| 70 | 50 69 | rspc2v | |- ( ( X e. V /\ Y e. V ) -> ( A. x e. V A. w e. V ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) /\ ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w ) ) -> ( ( ( R .x. Y ) e. V /\ ( R .x. ( Y .+ X ) ) = ( ( R .x. Y ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. Y ) = ( ( Q .x. Y ) .+ ( R .x. Y ) ) ) /\ ( ( ( Q .X. R ) .x. Y ) = ( Q .x. ( R .x. Y ) ) /\ ( .1. .x. Y ) = Y ) ) ) ) |
| 71 | 43 70 | syl5com | |- ( ( W e. LMod /\ ( Q e. K /\ R e. K ) ) -> ( ( X e. V /\ Y e. V ) -> ( ( ( R .x. Y ) e. V /\ ( R .x. ( Y .+ X ) ) = ( ( R .x. Y ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. Y ) = ( ( Q .x. Y ) .+ ( R .x. Y ) ) ) /\ ( ( ( Q .X. R ) .x. Y ) = ( Q .x. ( R .x. Y ) ) /\ ( .1. .x. Y ) = Y ) ) ) ) |
| 72 | 71 | 3impia | |- ( ( W e. LMod /\ ( Q e. K /\ R e. K ) /\ ( X e. V /\ Y e. V ) ) -> ( ( ( R .x. Y ) e. V /\ ( R .x. ( Y .+ X ) ) = ( ( R .x. Y ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. Y ) = ( ( Q .x. Y ) .+ ( R .x. Y ) ) ) /\ ( ( ( Q .X. R ) .x. Y ) = ( Q .x. ( R .x. Y ) ) /\ ( .1. .x. Y ) = Y ) ) ) |