This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all left modules, which are generalizations of left vector spaces. A left module over a ring is an (Abelian) group (vectors) together with a ring (scalars) and a left scalar product connecting them. (Contributed by NM, 4-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lmod | |- LMod = { g e. Grp | [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clmod | |- LMod |
|
| 1 | vg | |- g |
|
| 2 | cgrp | |- Grp |
|
| 3 | cbs | |- Base |
|
| 4 | 1 | cv | |- g |
| 5 | 4 3 | cfv | |- ( Base ` g ) |
| 6 | vv | |- v |
|
| 7 | cplusg | |- +g |
|
| 8 | 4 7 | cfv | |- ( +g ` g ) |
| 9 | va | |- a |
|
| 10 | csca | |- Scalar |
|
| 11 | 4 10 | cfv | |- ( Scalar ` g ) |
| 12 | vf | |- f |
|
| 13 | cvsca | |- .s |
|
| 14 | 4 13 | cfv | |- ( .s ` g ) |
| 15 | vs | |- s |
|
| 16 | 12 | cv | |- f |
| 17 | 16 3 | cfv | |- ( Base ` f ) |
| 18 | vk | |- k |
|
| 19 | 16 7 | cfv | |- ( +g ` f ) |
| 20 | vp | |- p |
|
| 21 | cmulr | |- .r |
|
| 22 | 16 21 | cfv | |- ( .r ` f ) |
| 23 | vt | |- t |
|
| 24 | crg | |- Ring |
|
| 25 | 16 24 | wcel | |- f e. Ring |
| 26 | vq | |- q |
|
| 27 | 18 | cv | |- k |
| 28 | vr | |- r |
|
| 29 | vx | |- x |
|
| 30 | 6 | cv | |- v |
| 31 | vw | |- w |
|
| 32 | 28 | cv | |- r |
| 33 | 15 | cv | |- s |
| 34 | 31 | cv | |- w |
| 35 | 32 34 33 | co | |- ( r s w ) |
| 36 | 35 30 | wcel | |- ( r s w ) e. v |
| 37 | 9 | cv | |- a |
| 38 | 29 | cv | |- x |
| 39 | 34 38 37 | co | |- ( w a x ) |
| 40 | 32 39 33 | co | |- ( r s ( w a x ) ) |
| 41 | 32 38 33 | co | |- ( r s x ) |
| 42 | 35 41 37 | co | |- ( ( r s w ) a ( r s x ) ) |
| 43 | 40 42 | wceq | |- ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) |
| 44 | 26 | cv | |- q |
| 45 | 20 | cv | |- p |
| 46 | 44 32 45 | co | |- ( q p r ) |
| 47 | 46 34 33 | co | |- ( ( q p r ) s w ) |
| 48 | 44 34 33 | co | |- ( q s w ) |
| 49 | 48 35 37 | co | |- ( ( q s w ) a ( r s w ) ) |
| 50 | 47 49 | wceq | |- ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) |
| 51 | 36 43 50 | w3a | |- ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) |
| 52 | 23 | cv | |- t |
| 53 | 44 32 52 | co | |- ( q t r ) |
| 54 | 53 34 33 | co | |- ( ( q t r ) s w ) |
| 55 | 44 35 33 | co | |- ( q s ( r s w ) ) |
| 56 | 54 55 | wceq | |- ( ( q t r ) s w ) = ( q s ( r s w ) ) |
| 57 | cur | |- 1r |
|
| 58 | 16 57 | cfv | |- ( 1r ` f ) |
| 59 | 58 34 33 | co | |- ( ( 1r ` f ) s w ) |
| 60 | 59 34 | wceq | |- ( ( 1r ` f ) s w ) = w |
| 61 | 56 60 | wa | |- ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) |
| 62 | 51 61 | wa | |- ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) |
| 63 | 62 31 30 | wral | |- A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) |
| 64 | 63 29 30 | wral | |- A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) |
| 65 | 64 28 27 | wral | |- A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) |
| 66 | 65 26 27 | wral | |- A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) |
| 67 | 25 66 | wa | |- ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) |
| 68 | 67 23 22 | wsbc | |- [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) |
| 69 | 68 20 19 | wsbc | |- [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) |
| 70 | 69 18 17 | wsbc | |- [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) |
| 71 | 70 15 14 | wsbc | |- [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) |
| 72 | 71 12 11 | wsbc | |- [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) |
| 73 | 72 9 8 | wsbc | |- [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) |
| 74 | 73 6 5 | wsbc | |- [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) |
| 75 | 74 1 2 | crab | |- { g e. Grp | [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) } |
| 76 | 0 75 | wceq | |- LMod = { g e. Grp | [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) } |