This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalent formulation of the basis predicate: a subset is a basis iff it is a minimal spanning set. (Contributed by Mario Carneiro, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islbs2.v | |- V = ( Base ` W ) |
|
| islbs2.j | |- J = ( LBasis ` W ) |
||
| islbs2.n | |- N = ( LSpan ` W ) |
||
| Assertion | islbs3 | |- ( W e. LVec -> ( B e. J <-> ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islbs2.v | |- V = ( Base ` W ) |
|
| 2 | islbs2.j | |- J = ( LBasis ` W ) |
|
| 3 | islbs2.n | |- N = ( LSpan ` W ) |
|
| 4 | 1 2 | lbsss | |- ( B e. J -> B C_ V ) |
| 5 | 4 | adantl | |- ( ( W e. LVec /\ B e. J ) -> B C_ V ) |
| 6 | 1 2 3 | lbssp | |- ( B e. J -> ( N ` B ) = V ) |
| 7 | 6 | adantl | |- ( ( W e. LVec /\ B e. J ) -> ( N ` B ) = V ) |
| 8 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 9 | 8 | 3ad2ant1 | |- ( ( W e. LVec /\ B e. J /\ s C. B ) -> W e. LMod ) |
| 10 | pssss | |- ( s C. B -> s C_ B ) |
|
| 11 | 10 4 | sylan9ssr | |- ( ( B e. J /\ s C. B ) -> s C_ V ) |
| 12 | 11 | 3adant1 | |- ( ( W e. LVec /\ B e. J /\ s C. B ) -> s C_ V ) |
| 13 | 1 3 | lspssv | |- ( ( W e. LMod /\ s C_ V ) -> ( N ` s ) C_ V ) |
| 14 | 9 12 13 | syl2anc | |- ( ( W e. LVec /\ B e. J /\ s C. B ) -> ( N ` s ) C_ V ) |
| 15 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 16 | 15 | lvecdrng | |- ( W e. LVec -> ( Scalar ` W ) e. DivRing ) |
| 17 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
| 18 | eqid | |- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
|
| 19 | 17 18 | drngunz | |- ( ( Scalar ` W ) e. DivRing -> ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) |
| 20 | 16 19 | syl | |- ( W e. LVec -> ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) |
| 21 | 8 20 | jca | |- ( W e. LVec -> ( W e. LMod /\ ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) ) |
| 22 | 2 3 15 18 17 1 | lbspss | |- ( ( ( W e. LMod /\ ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) /\ B e. J /\ s C. B ) -> ( N ` s ) =/= V ) |
| 23 | 21 22 | syl3an1 | |- ( ( W e. LVec /\ B e. J /\ s C. B ) -> ( N ` s ) =/= V ) |
| 24 | df-pss | |- ( ( N ` s ) C. V <-> ( ( N ` s ) C_ V /\ ( N ` s ) =/= V ) ) |
|
| 25 | 14 23 24 | sylanbrc | |- ( ( W e. LVec /\ B e. J /\ s C. B ) -> ( N ` s ) C. V ) |
| 26 | 25 | 3expia | |- ( ( W e. LVec /\ B e. J ) -> ( s C. B -> ( N ` s ) C. V ) ) |
| 27 | 26 | alrimiv | |- ( ( W e. LVec /\ B e. J ) -> A. s ( s C. B -> ( N ` s ) C. V ) ) |
| 28 | 5 7 27 | 3jca | |- ( ( W e. LVec /\ B e. J ) -> ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) |
| 29 | simpr1 | |- ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) -> B C_ V ) |
|
| 30 | simpr2 | |- ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) -> ( N ` B ) = V ) |
|
| 31 | simplr1 | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ x e. B ) -> B C_ V ) |
|
| 32 | 31 | ssdifssd | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ x e. B ) -> ( B \ { x } ) C_ V ) |
| 33 | 1 | fvexi | |- V e. _V |
| 34 | ssexg | |- ( ( ( B \ { x } ) C_ V /\ V e. _V ) -> ( B \ { x } ) e. _V ) |
|
| 35 | 32 33 34 | sylancl | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ x e. B ) -> ( B \ { x } ) e. _V ) |
| 36 | simplr3 | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ x e. B ) -> A. s ( s C. B -> ( N ` s ) C. V ) ) |
|
| 37 | difssd | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ x e. B ) -> ( B \ { x } ) C_ B ) |
|
| 38 | simpr | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ x e. B ) -> x e. B ) |
|
| 39 | neldifsn | |- -. x e. ( B \ { x } ) |
|
| 40 | nelne1 | |- ( ( x e. B /\ -. x e. ( B \ { x } ) ) -> B =/= ( B \ { x } ) ) |
|
| 41 | 38 39 40 | sylancl | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ x e. B ) -> B =/= ( B \ { x } ) ) |
| 42 | 41 | necomd | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ x e. B ) -> ( B \ { x } ) =/= B ) |
| 43 | df-pss | |- ( ( B \ { x } ) C. B <-> ( ( B \ { x } ) C_ B /\ ( B \ { x } ) =/= B ) ) |
|
| 44 | 37 42 43 | sylanbrc | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ x e. B ) -> ( B \ { x } ) C. B ) |
| 45 | psseq1 | |- ( s = ( B \ { x } ) -> ( s C. B <-> ( B \ { x } ) C. B ) ) |
|
| 46 | fveq2 | |- ( s = ( B \ { x } ) -> ( N ` s ) = ( N ` ( B \ { x } ) ) ) |
|
| 47 | 46 | psseq1d | |- ( s = ( B \ { x } ) -> ( ( N ` s ) C. V <-> ( N ` ( B \ { x } ) ) C. V ) ) |
| 48 | 45 47 | imbi12d | |- ( s = ( B \ { x } ) -> ( ( s C. B -> ( N ` s ) C. V ) <-> ( ( B \ { x } ) C. B -> ( N ` ( B \ { x } ) ) C. V ) ) ) |
| 49 | 48 | spcgv | |- ( ( B \ { x } ) e. _V -> ( A. s ( s C. B -> ( N ` s ) C. V ) -> ( ( B \ { x } ) C. B -> ( N ` ( B \ { x } ) ) C. V ) ) ) |
| 50 | 35 36 44 49 | syl3c | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ x e. B ) -> ( N ` ( B \ { x } ) ) C. V ) |
| 51 | dfpss3 | |- ( ( N ` ( B \ { x } ) ) C. V <-> ( ( N ` ( B \ { x } ) ) C_ V /\ -. V C_ ( N ` ( B \ { x } ) ) ) ) |
|
| 52 | 51 | simprbi | |- ( ( N ` ( B \ { x } ) ) C. V -> -. V C_ ( N ` ( B \ { x } ) ) ) |
| 53 | 50 52 | syl | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ x e. B ) -> -. V C_ ( N ` ( B \ { x } ) ) ) |
| 54 | simplr2 | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ ( x e. B /\ x e. ( N ` ( B \ { x } ) ) ) ) -> ( N ` B ) = V ) |
|
| 55 | 8 | ad2antrr | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ ( x e. B /\ x e. ( N ` ( B \ { x } ) ) ) ) -> W e. LMod ) |
| 56 | 32 | adantrr | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ ( x e. B /\ x e. ( N ` ( B \ { x } ) ) ) ) -> ( B \ { x } ) C_ V ) |
| 57 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 58 | 1 57 3 | lspcl | |- ( ( W e. LMod /\ ( B \ { x } ) C_ V ) -> ( N ` ( B \ { x } ) ) e. ( LSubSp ` W ) ) |
| 59 | 55 56 58 | syl2anc | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ ( x e. B /\ x e. ( N ` ( B \ { x } ) ) ) ) -> ( N ` ( B \ { x } ) ) e. ( LSubSp ` W ) ) |
| 60 | ssun1 | |- B C_ ( B u. { x } ) |
|
| 61 | undif1 | |- ( ( B \ { x } ) u. { x } ) = ( B u. { x } ) |
|
| 62 | 60 61 | sseqtrri | |- B C_ ( ( B \ { x } ) u. { x } ) |
| 63 | 1 3 | lspssid | |- ( ( W e. LMod /\ ( B \ { x } ) C_ V ) -> ( B \ { x } ) C_ ( N ` ( B \ { x } ) ) ) |
| 64 | 55 56 63 | syl2anc | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ ( x e. B /\ x e. ( N ` ( B \ { x } ) ) ) ) -> ( B \ { x } ) C_ ( N ` ( B \ { x } ) ) ) |
| 65 | simprr | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ ( x e. B /\ x e. ( N ` ( B \ { x } ) ) ) ) -> x e. ( N ` ( B \ { x } ) ) ) |
|
| 66 | 65 | snssd | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ ( x e. B /\ x e. ( N ` ( B \ { x } ) ) ) ) -> { x } C_ ( N ` ( B \ { x } ) ) ) |
| 67 | 64 66 | unssd | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ ( x e. B /\ x e. ( N ` ( B \ { x } ) ) ) ) -> ( ( B \ { x } ) u. { x } ) C_ ( N ` ( B \ { x } ) ) ) |
| 68 | 62 67 | sstrid | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ ( x e. B /\ x e. ( N ` ( B \ { x } ) ) ) ) -> B C_ ( N ` ( B \ { x } ) ) ) |
| 69 | 57 3 | lspssp | |- ( ( W e. LMod /\ ( N ` ( B \ { x } ) ) e. ( LSubSp ` W ) /\ B C_ ( N ` ( B \ { x } ) ) ) -> ( N ` B ) C_ ( N ` ( B \ { x } ) ) ) |
| 70 | 55 59 68 69 | syl3anc | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ ( x e. B /\ x e. ( N ` ( B \ { x } ) ) ) ) -> ( N ` B ) C_ ( N ` ( B \ { x } ) ) ) |
| 71 | 54 70 | eqsstrrd | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ ( x e. B /\ x e. ( N ` ( B \ { x } ) ) ) ) -> V C_ ( N ` ( B \ { x } ) ) ) |
| 72 | 71 | expr | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ x e. B ) -> ( x e. ( N ` ( B \ { x } ) ) -> V C_ ( N ` ( B \ { x } ) ) ) ) |
| 73 | 53 72 | mtod | |- ( ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) /\ x e. B ) -> -. x e. ( N ` ( B \ { x } ) ) ) |
| 74 | 73 | ralrimiva | |- ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) -> A. x e. B -. x e. ( N ` ( B \ { x } ) ) ) |
| 75 | 1 2 3 | islbs2 | |- ( W e. LVec -> ( B e. J <-> ( B C_ V /\ ( N ` B ) = V /\ A. x e. B -. x e. ( N ` ( B \ { x } ) ) ) ) ) |
| 76 | 75 | adantr | |- ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) -> ( B e. J <-> ( B C_ V /\ ( N ` B ) = V /\ A. x e. B -. x e. ( N ` ( B \ { x } ) ) ) ) ) |
| 77 | 29 30 74 76 | mpbir3and | |- ( ( W e. LVec /\ ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) -> B e. J ) |
| 78 | 28 77 | impbida | |- ( W e. LVec -> ( B e. J <-> ( B C_ V /\ ( N ` B ) = V /\ A. s ( s C. B -> ( N ` s ) C. V ) ) ) ) |