This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A basis is a set of vectors. (Contributed by Mario Carneiro, 24-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbsss.v | |- V = ( Base ` W ) |
|
| lbsss.j | |- J = ( LBasis ` W ) |
||
| Assertion | lbsss | |- ( B e. J -> B C_ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsss.v | |- V = ( Base ` W ) |
|
| 2 | lbsss.j | |- J = ( LBasis ` W ) |
|
| 3 | elfvdm | |- ( B e. ( LBasis ` W ) -> W e. dom LBasis ) |
|
| 4 | 3 2 | eleq2s | |- ( B e. J -> W e. dom LBasis ) |
| 5 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 6 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 7 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 8 | eqid | |- ( LSpan ` W ) = ( LSpan ` W ) |
|
| 9 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
| 10 | 1 5 6 7 2 8 9 | islbs | |- ( W e. dom LBasis -> ( B e. J <-> ( B C_ V /\ ( ( LSpan ` W ) ` B ) = V /\ A. x e. B A. y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( y ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( B \ { x } ) ) ) ) ) |
| 11 | 4 10 | syl | |- ( B e. J -> ( B e. J <-> ( B C_ V /\ ( ( LSpan ` W ) ` B ) = V /\ A. x e. B A. y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( y ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( B \ { x } ) ) ) ) ) |
| 12 | 11 | ibi | |- ( B e. J -> ( B C_ V /\ ( ( LSpan ` W ) ` B ) = V /\ A. x e. B A. y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( y ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( B \ { x } ) ) ) ) |
| 13 | 12 | simp1d | |- ( B e. J -> B C_ V ) |