This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-3 . (Contributed by Stefan O'Rear, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isf33lem | |- Fin3 = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin32i | |- ( f e. Fin3 -> -. _om ~<_* f ) |
|
| 2 | fveq1 | |- ( a = b -> ( a ` suc x ) = ( b ` suc x ) ) |
|
| 3 | fveq1 | |- ( a = b -> ( a ` x ) = ( b ` x ) ) |
|
| 4 | 2 3 | sseq12d | |- ( a = b -> ( ( a ` suc x ) C_ ( a ` x ) <-> ( b ` suc x ) C_ ( b ` x ) ) ) |
| 5 | 4 | ralbidv | |- ( a = b -> ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) <-> A. x e. _om ( b ` suc x ) C_ ( b ` x ) ) ) |
| 6 | rneq | |- ( a = b -> ran a = ran b ) |
|
| 7 | 6 | inteqd | |- ( a = b -> |^| ran a = |^| ran b ) |
| 8 | 7 6 | eleq12d | |- ( a = b -> ( |^| ran a e. ran a <-> |^| ran b e. ran b ) ) |
| 9 | 5 8 | imbi12d | |- ( a = b -> ( ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) <-> ( A. x e. _om ( b ` suc x ) C_ ( b ` x ) -> |^| ran b e. ran b ) ) ) |
| 10 | 9 | cbvralvw | |- ( A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) <-> A. b e. ( ~P g ^m _om ) ( A. x e. _om ( b ` suc x ) C_ ( b ` x ) -> |^| ran b e. ran b ) ) |
| 11 | pweq | |- ( g = y -> ~P g = ~P y ) |
|
| 12 | 11 | oveq1d | |- ( g = y -> ( ~P g ^m _om ) = ( ~P y ^m _om ) ) |
| 13 | 12 | raleqdv | |- ( g = y -> ( A. b e. ( ~P g ^m _om ) ( A. x e. _om ( b ` suc x ) C_ ( b ` x ) -> |^| ran b e. ran b ) <-> A. b e. ( ~P y ^m _om ) ( A. x e. _om ( b ` suc x ) C_ ( b ` x ) -> |^| ran b e. ran b ) ) ) |
| 14 | 10 13 | bitrid | |- ( g = y -> ( A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) <-> A. b e. ( ~P y ^m _om ) ( A. x e. _om ( b ` suc x ) C_ ( b ` x ) -> |^| ran b e. ran b ) ) ) |
| 15 | 14 | cbvabv | |- { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } = { y | A. b e. ( ~P y ^m _om ) ( A. x e. _om ( b ` suc x ) C_ ( b ` x ) -> |^| ran b e. ran b ) } |
| 16 | 15 | isf32lem12 | |- ( f e. Fin3 -> ( -. _om ~<_* f -> f e. { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } ) ) |
| 17 | 1 16 | mpd | |- ( f e. Fin3 -> f e. { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } ) |
| 18 | 10 | abbii | |- { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } = { g | A. b e. ( ~P g ^m _om ) ( A. x e. _om ( b ` suc x ) C_ ( b ` x ) -> |^| ran b e. ran b ) } |
| 19 | 18 | fin23lem41 | |- ( f e. { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } -> f e. Fin3 ) |
| 20 | 17 19 | impbii | |- ( f e. Fin3 <-> f e. { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } ) |
| 21 | 20 | eqriv | |- Fin3 = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |