This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . (Contributed by Stefan O'Rear, 6-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isf32lem40.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
|
| Assertion | isf32lem12 | |- ( G e. V -> ( -. _om ~<_* G -> G e. F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem40.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
|
| 2 | elmapi | |- ( f e. ( ~P G ^m _om ) -> f : _om --> ~P G ) |
|
| 3 | isf32lem11 | |- ( ( G e. V /\ ( f : _om --> ~P G /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) /\ -. |^| ran f e. ran f ) ) -> _om ~<_* G ) |
|
| 4 | 3 | expcom | |- ( ( f : _om --> ~P G /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) /\ -. |^| ran f e. ran f ) -> ( G e. V -> _om ~<_* G ) ) |
| 5 | 4 | 3expa | |- ( ( ( f : _om --> ~P G /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) /\ -. |^| ran f e. ran f ) -> ( G e. V -> _om ~<_* G ) ) |
| 6 | 5 | impancom | |- ( ( ( f : _om --> ~P G /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) /\ G e. V ) -> ( -. |^| ran f e. ran f -> _om ~<_* G ) ) |
| 7 | 6 | con1d | |- ( ( ( f : _om --> ~P G /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) /\ G e. V ) -> ( -. _om ~<_* G -> |^| ran f e. ran f ) ) |
| 8 | 7 | exp31 | |- ( f : _om --> ~P G -> ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> ( G e. V -> ( -. _om ~<_* G -> |^| ran f e. ran f ) ) ) ) |
| 9 | 2 8 | syl | |- ( f e. ( ~P G ^m _om ) -> ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> ( G e. V -> ( -. _om ~<_* G -> |^| ran f e. ran f ) ) ) ) |
| 10 | 9 | com4t | |- ( G e. V -> ( -. _om ~<_* G -> ( f e. ( ~P G ^m _om ) -> ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> |^| ran f e. ran f ) ) ) ) |
| 11 | 10 | ralrimdv | |- ( G e. V -> ( -. _om ~<_* G -> A. f e. ( ~P G ^m _om ) ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> |^| ran f e. ran f ) ) ) |
| 12 | 1 | isfin3ds | |- ( G e. V -> ( G e. F <-> A. f e. ( ~P G ^m _om ) ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> |^| ran f e. ran f ) ) ) |
| 13 | 11 12 | sylibrd | |- ( G e. V -> ( -. _om ~<_* G -> G e. F ) ) |