This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One half of isfin3-2 . (Contributed by Mario Carneiro, 3-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin32i | |- ( A e. Fin3 -> -. _om ~<_* A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin3 | |- ( A e. Fin3 <-> ~P A e. Fin4 ) |
|
| 2 | isfin4-2 | |- ( ~P A e. Fin4 -> ( ~P A e. Fin4 <-> -. _om ~<_ ~P A ) ) |
|
| 3 | 2 | ibi | |- ( ~P A e. Fin4 -> -. _om ~<_ ~P A ) |
| 4 | relwdom | |- Rel ~<_* |
|
| 5 | 4 | brrelex1i | |- ( _om ~<_* A -> _om e. _V ) |
| 6 | canth2g | |- ( _om e. _V -> _om ~< ~P _om ) |
|
| 7 | sdomdom | |- ( _om ~< ~P _om -> _om ~<_ ~P _om ) |
|
| 8 | 5 6 7 | 3syl | |- ( _om ~<_* A -> _om ~<_ ~P _om ) |
| 9 | wdompwdom | |- ( _om ~<_* A -> ~P _om ~<_ ~P A ) |
|
| 10 | domtr | |- ( ( _om ~<_ ~P _om /\ ~P _om ~<_ ~P A ) -> _om ~<_ ~P A ) |
|
| 11 | 8 9 10 | syl2anc | |- ( _om ~<_* A -> _om ~<_ ~P A ) |
| 12 | 3 11 | nsyl | |- ( ~P A e. Fin4 -> -. _om ~<_* A ) |
| 13 | 1 12 | sylbi | |- ( A e. Fin3 -> -. _om ~<_* A ) |