This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-3 . (Contributed by Stefan O'Rear, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isf33lem | ⊢ FinIII = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin32i | ⊢ ( 𝑓 ∈ FinIII → ¬ ω ≼* 𝑓 ) | |
| 2 | fveq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ‘ suc 𝑥 ) = ( 𝑏 ‘ suc 𝑥 ) ) | |
| 3 | fveq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) | |
| 4 | 2 3 | sseq12d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) ↔ ( 𝑏 ‘ suc 𝑥 ) ⊆ ( 𝑏 ‘ 𝑥 ) ) ) |
| 5 | 4 | ralbidv | ⊢ ( 𝑎 = 𝑏 → ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ω ( 𝑏 ‘ suc 𝑥 ) ⊆ ( 𝑏 ‘ 𝑥 ) ) ) |
| 6 | rneq | ⊢ ( 𝑎 = 𝑏 → ran 𝑎 = ran 𝑏 ) | |
| 7 | 6 | inteqd | ⊢ ( 𝑎 = 𝑏 → ∩ ran 𝑎 = ∩ ran 𝑏 ) |
| 8 | 7 6 | eleq12d | ⊢ ( 𝑎 = 𝑏 → ( ∩ ran 𝑎 ∈ ran 𝑎 ↔ ∩ ran 𝑏 ∈ ran 𝑏 ) ) |
| 9 | 5 8 | imbi12d | ⊢ ( 𝑎 = 𝑏 → ( ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) ↔ ( ∀ 𝑥 ∈ ω ( 𝑏 ‘ suc 𝑥 ) ⊆ ( 𝑏 ‘ 𝑥 ) → ∩ ran 𝑏 ∈ ran 𝑏 ) ) ) |
| 10 | 9 | cbvralvw | ⊢ ( ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) ↔ ∀ 𝑏 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑏 ‘ suc 𝑥 ) ⊆ ( 𝑏 ‘ 𝑥 ) → ∩ ran 𝑏 ∈ ran 𝑏 ) ) |
| 11 | pweq | ⊢ ( 𝑔 = 𝑦 → 𝒫 𝑔 = 𝒫 𝑦 ) | |
| 12 | 11 | oveq1d | ⊢ ( 𝑔 = 𝑦 → ( 𝒫 𝑔 ↑m ω ) = ( 𝒫 𝑦 ↑m ω ) ) |
| 13 | 12 | raleqdv | ⊢ ( 𝑔 = 𝑦 → ( ∀ 𝑏 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑏 ‘ suc 𝑥 ) ⊆ ( 𝑏 ‘ 𝑥 ) → ∩ ran 𝑏 ∈ ran 𝑏 ) ↔ ∀ 𝑏 ∈ ( 𝒫 𝑦 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑏 ‘ suc 𝑥 ) ⊆ ( 𝑏 ‘ 𝑥 ) → ∩ ran 𝑏 ∈ ran 𝑏 ) ) ) |
| 14 | 10 13 | bitrid | ⊢ ( 𝑔 = 𝑦 → ( ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) ↔ ∀ 𝑏 ∈ ( 𝒫 𝑦 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑏 ‘ suc 𝑥 ) ⊆ ( 𝑏 ‘ 𝑥 ) → ∩ ran 𝑏 ∈ ran 𝑏 ) ) ) |
| 15 | 14 | cbvabv | ⊢ { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } = { 𝑦 ∣ ∀ 𝑏 ∈ ( 𝒫 𝑦 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑏 ‘ suc 𝑥 ) ⊆ ( 𝑏 ‘ 𝑥 ) → ∩ ran 𝑏 ∈ ran 𝑏 ) } |
| 16 | 15 | isf32lem12 | ⊢ ( 𝑓 ∈ FinIII → ( ¬ ω ≼* 𝑓 → 𝑓 ∈ { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } ) ) |
| 17 | 1 16 | mpd | ⊢ ( 𝑓 ∈ FinIII → 𝑓 ∈ { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } ) |
| 18 | 10 | abbii | ⊢ { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } = { 𝑔 ∣ ∀ 𝑏 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑏 ‘ suc 𝑥 ) ⊆ ( 𝑏 ‘ 𝑥 ) → ∩ ran 𝑏 ∈ ran 𝑏 ) } |
| 19 | 18 | fin23lem41 | ⊢ ( 𝑓 ∈ { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } → 𝑓 ∈ FinIII ) |
| 20 | 17 19 | impbii | ⊢ ( 𝑓 ∈ FinIII ↔ 𝑓 ∈ { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } ) |
| 21 | 20 | eqriv | ⊢ FinIII = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } |