This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . A set which satisfies the descending sequence condition must be III-finite. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem40.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
|
| Assertion | fin23lem41 | |- ( A e. F -> A e. Fin3 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem40.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
|
| 2 | brdomi | |- ( _om ~<_ ~P A -> E. b b : _om -1-1-> ~P A ) |
|
| 3 | 1 | fin23lem33 | |- ( A e. F -> E. c A. d ( ( d : _om -1-1-> _V /\ U. ran d C_ A ) -> ( ( c ` d ) : _om -1-1-> _V /\ U. ran ( c ` d ) C. U. ran d ) ) ) |
| 4 | 3 | adantl | |- ( ( b : _om -1-1-> ~P A /\ A e. F ) -> E. c A. d ( ( d : _om -1-1-> _V /\ U. ran d C_ A ) -> ( ( c ` d ) : _om -1-1-> _V /\ U. ran ( c ` d ) C. U. ran d ) ) ) |
| 5 | ssv | |- ~P A C_ _V |
|
| 6 | f1ss | |- ( ( b : _om -1-1-> ~P A /\ ~P A C_ _V ) -> b : _om -1-1-> _V ) |
|
| 7 | 5 6 | mpan2 | |- ( b : _om -1-1-> ~P A -> b : _om -1-1-> _V ) |
| 8 | 7 | ad2antrr | |- ( ( ( b : _om -1-1-> ~P A /\ A e. F ) /\ A. d ( ( d : _om -1-1-> _V /\ U. ran d C_ A ) -> ( ( c ` d ) : _om -1-1-> _V /\ U. ran ( c ` d ) C. U. ran d ) ) ) -> b : _om -1-1-> _V ) |
| 9 | f1f | |- ( b : _om -1-1-> ~P A -> b : _om --> ~P A ) |
|
| 10 | frn | |- ( b : _om --> ~P A -> ran b C_ ~P A ) |
|
| 11 | uniss | |- ( ran b C_ ~P A -> U. ran b C_ U. ~P A ) |
|
| 12 | 9 10 11 | 3syl | |- ( b : _om -1-1-> ~P A -> U. ran b C_ U. ~P A ) |
| 13 | unipw | |- U. ~P A = A |
|
| 14 | 12 13 | sseqtrdi | |- ( b : _om -1-1-> ~P A -> U. ran b C_ A ) |
| 15 | 14 | ad2antrr | |- ( ( ( b : _om -1-1-> ~P A /\ A e. F ) /\ A. d ( ( d : _om -1-1-> _V /\ U. ran d C_ A ) -> ( ( c ` d ) : _om -1-1-> _V /\ U. ran ( c ` d ) C. U. ran d ) ) ) -> U. ran b C_ A ) |
| 16 | f1eq1 | |- ( d = e -> ( d : _om -1-1-> _V <-> e : _om -1-1-> _V ) ) |
|
| 17 | rneq | |- ( d = e -> ran d = ran e ) |
|
| 18 | 17 | unieqd | |- ( d = e -> U. ran d = U. ran e ) |
| 19 | 18 | sseq1d | |- ( d = e -> ( U. ran d C_ A <-> U. ran e C_ A ) ) |
| 20 | 16 19 | anbi12d | |- ( d = e -> ( ( d : _om -1-1-> _V /\ U. ran d C_ A ) <-> ( e : _om -1-1-> _V /\ U. ran e C_ A ) ) ) |
| 21 | fveq2 | |- ( d = e -> ( c ` d ) = ( c ` e ) ) |
|
| 22 | f1eq1 | |- ( ( c ` d ) = ( c ` e ) -> ( ( c ` d ) : _om -1-1-> _V <-> ( c ` e ) : _om -1-1-> _V ) ) |
|
| 23 | 21 22 | syl | |- ( d = e -> ( ( c ` d ) : _om -1-1-> _V <-> ( c ` e ) : _om -1-1-> _V ) ) |
| 24 | 21 | rneqd | |- ( d = e -> ran ( c ` d ) = ran ( c ` e ) ) |
| 25 | 24 | unieqd | |- ( d = e -> U. ran ( c ` d ) = U. ran ( c ` e ) ) |
| 26 | 25 18 | psseq12d | |- ( d = e -> ( U. ran ( c ` d ) C. U. ran d <-> U. ran ( c ` e ) C. U. ran e ) ) |
| 27 | 23 26 | anbi12d | |- ( d = e -> ( ( ( c ` d ) : _om -1-1-> _V /\ U. ran ( c ` d ) C. U. ran d ) <-> ( ( c ` e ) : _om -1-1-> _V /\ U. ran ( c ` e ) C. U. ran e ) ) ) |
| 28 | 20 27 | imbi12d | |- ( d = e -> ( ( ( d : _om -1-1-> _V /\ U. ran d C_ A ) -> ( ( c ` d ) : _om -1-1-> _V /\ U. ran ( c ` d ) C. U. ran d ) ) <-> ( ( e : _om -1-1-> _V /\ U. ran e C_ A ) -> ( ( c ` e ) : _om -1-1-> _V /\ U. ran ( c ` e ) C. U. ran e ) ) ) ) |
| 29 | 28 | cbvalvw | |- ( A. d ( ( d : _om -1-1-> _V /\ U. ran d C_ A ) -> ( ( c ` d ) : _om -1-1-> _V /\ U. ran ( c ` d ) C. U. ran d ) ) <-> A. e ( ( e : _om -1-1-> _V /\ U. ran e C_ A ) -> ( ( c ` e ) : _om -1-1-> _V /\ U. ran ( c ` e ) C. U. ran e ) ) ) |
| 30 | 29 | biimpi | |- ( A. d ( ( d : _om -1-1-> _V /\ U. ran d C_ A ) -> ( ( c ` d ) : _om -1-1-> _V /\ U. ran ( c ` d ) C. U. ran d ) ) -> A. e ( ( e : _om -1-1-> _V /\ U. ran e C_ A ) -> ( ( c ` e ) : _om -1-1-> _V /\ U. ran ( c ` e ) C. U. ran e ) ) ) |
| 31 | 30 | adantl | |- ( ( ( b : _om -1-1-> ~P A /\ A e. F ) /\ A. d ( ( d : _om -1-1-> _V /\ U. ran d C_ A ) -> ( ( c ` d ) : _om -1-1-> _V /\ U. ran ( c ` d ) C. U. ran d ) ) ) -> A. e ( ( e : _om -1-1-> _V /\ U. ran e C_ A ) -> ( ( c ` e ) : _om -1-1-> _V /\ U. ran ( c ` e ) C. U. ran e ) ) ) |
| 32 | eqid | |- ( rec ( c , b ) |` _om ) = ( rec ( c , b ) |` _om ) |
|
| 33 | 1 8 15 31 32 | fin23lem39 | |- ( ( ( b : _om -1-1-> ~P A /\ A e. F ) /\ A. d ( ( d : _om -1-1-> _V /\ U. ran d C_ A ) -> ( ( c ` d ) : _om -1-1-> _V /\ U. ran ( c ` d ) C. U. ran d ) ) ) -> -. A e. F ) |
| 34 | 4 33 | exlimddv | |- ( ( b : _om -1-1-> ~P A /\ A e. F ) -> -. A e. F ) |
| 35 | 34 | pm2.01da | |- ( b : _om -1-1-> ~P A -> -. A e. F ) |
| 36 | 35 | exlimiv | |- ( E. b b : _om -1-1-> ~P A -> -. A e. F ) |
| 37 | 2 36 | syl | |- ( _om ~<_ ~P A -> -. A e. F ) |
| 38 | 37 | con2i | |- ( A e. F -> -. _om ~<_ ~P A ) |
| 39 | pwexg | |- ( A e. F -> ~P A e. _V ) |
|
| 40 | isfin4-2 | |- ( ~P A e. _V -> ( ~P A e. Fin4 <-> -. _om ~<_ ~P A ) ) |
|
| 41 | 39 40 | syl | |- ( A e. F -> ( ~P A e. Fin4 <-> -. _om ~<_ ~P A ) ) |
| 42 | 38 41 | mpbird | |- ( A e. F -> ~P A e. Fin4 ) |
| 43 | isfin3 | |- ( A e. Fin3 <-> ~P A e. Fin4 ) |
|
| 44 | 42 43 | sylibr | |- ( A e. F -> A e. Fin3 ) |