This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equivalence between the right conjuncts in the right hand sides of isdomn and isdomn2 , in predicate calculus form. (Contributed by SN, 16-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isdomn5 | |- ( A. a e. B A. b e. B ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) <-> A. a e. ( B \ { .0. } ) A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2.04 | |- ( ( -. a = .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) <-> ( ( a .x. b ) = .0. -> ( -. a = .0. -> b = .0. ) ) ) |
|
| 2 | df-ne | |- ( a =/= .0. <-> -. a = .0. ) |
|
| 3 | 2 | imbi1i | |- ( ( a =/= .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) <-> ( -. a = .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) ) |
| 4 | df-or | |- ( ( a = .0. \/ b = .0. ) <-> ( -. a = .0. -> b = .0. ) ) |
|
| 5 | 4 | imbi2i | |- ( ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) <-> ( ( a .x. b ) = .0. -> ( -. a = .0. -> b = .0. ) ) ) |
| 6 | 1 3 5 | 3bitr4ri | |- ( ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) <-> ( a =/= .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) ) |
| 7 | 6 | 2ralbii | |- ( A. a e. B A. b e. B ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) <-> A. a e. B A. b e. B ( a =/= .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) ) |
| 8 | r19.21v | |- ( A. b e. B ( a =/= .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) <-> ( a =/= .0. -> A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) ) |
|
| 9 | 8 | ralbii | |- ( A. a e. B A. b e. B ( a =/= .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) <-> A. a e. B ( a =/= .0. -> A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) ) |
| 10 | raldifsnb | |- ( A. a e. B ( a =/= .0. -> A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) <-> A. a e. ( B \ { .0. } ) A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) |
|
| 11 | 7 9 10 | 3bitri | |- ( A. a e. B A. b e. B ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) <-> A. a e. ( B \ { .0. } ) A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) |