This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdomn.b | |- B = ( Base ` R ) |
|
| isdomn.t | |- .x. = ( .r ` R ) |
||
| isdomn.z | |- .0. = ( 0g ` R ) |
||
| Assertion | isdomn | |- ( R e. Domn <-> ( R e. NzRing /\ A. x e. B A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn.b | |- B = ( Base ` R ) |
|
| 2 | isdomn.t | |- .x. = ( .r ` R ) |
|
| 3 | isdomn.z | |- .0. = ( 0g ` R ) |
|
| 4 | fvexd | |- ( r = R -> ( Base ` r ) e. _V ) |
|
| 5 | fveq2 | |- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
|
| 6 | 5 1 | eqtr4di | |- ( r = R -> ( Base ` r ) = B ) |
| 7 | fvexd | |- ( ( r = R /\ b = B ) -> ( 0g ` r ) e. _V ) |
|
| 8 | fveq2 | |- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
|
| 9 | 8 | adantr | |- ( ( r = R /\ b = B ) -> ( 0g ` r ) = ( 0g ` R ) ) |
| 10 | 9 3 | eqtr4di | |- ( ( r = R /\ b = B ) -> ( 0g ` r ) = .0. ) |
| 11 | simplr | |- ( ( ( r = R /\ b = B ) /\ z = .0. ) -> b = B ) |
|
| 12 | fveq2 | |- ( r = R -> ( .r ` r ) = ( .r ` R ) ) |
|
| 13 | 12 2 | eqtr4di | |- ( r = R -> ( .r ` r ) = .x. ) |
| 14 | 13 | oveqdr | |- ( ( r = R /\ b = B ) -> ( x ( .r ` r ) y ) = ( x .x. y ) ) |
| 15 | id | |- ( z = .0. -> z = .0. ) |
|
| 16 | 14 15 | eqeqan12d | |- ( ( ( r = R /\ b = B ) /\ z = .0. ) -> ( ( x ( .r ` r ) y ) = z <-> ( x .x. y ) = .0. ) ) |
| 17 | eqeq2 | |- ( z = .0. -> ( x = z <-> x = .0. ) ) |
|
| 18 | eqeq2 | |- ( z = .0. -> ( y = z <-> y = .0. ) ) |
|
| 19 | 17 18 | orbi12d | |- ( z = .0. -> ( ( x = z \/ y = z ) <-> ( x = .0. \/ y = .0. ) ) ) |
| 20 | 19 | adantl | |- ( ( ( r = R /\ b = B ) /\ z = .0. ) -> ( ( x = z \/ y = z ) <-> ( x = .0. \/ y = .0. ) ) ) |
| 21 | 16 20 | imbi12d | |- ( ( ( r = R /\ b = B ) /\ z = .0. ) -> ( ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) <-> ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
| 22 | 11 21 | raleqbidv | |- ( ( ( r = R /\ b = B ) /\ z = .0. ) -> ( A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) <-> A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
| 23 | 11 22 | raleqbidv | |- ( ( ( r = R /\ b = B ) /\ z = .0. ) -> ( A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) <-> A. x e. B A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
| 24 | 7 10 23 | sbcied2 | |- ( ( r = R /\ b = B ) -> ( [. ( 0g ` r ) / z ]. A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) <-> A. x e. B A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
| 25 | 4 6 24 | sbcied2 | |- ( r = R -> ( [. ( Base ` r ) / b ]. [. ( 0g ` r ) / z ]. A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) <-> A. x e. B A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
| 26 | df-domn | |- Domn = { r e. NzRing | [. ( Base ` r ) / b ]. [. ( 0g ` r ) / z ]. A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) } |
|
| 27 | 25 26 | elrab2 | |- ( R e. Domn <-> ( R e. NzRing /\ A. x e. B A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |