This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a domain, a product of nonzero elements is nonzero. (Contributed by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | domneq0.b | |- B = ( Base ` R ) |
|
| domneq0.t | |- .x. = ( .r ` R ) |
||
| domneq0.z | |- .0. = ( 0g ` R ) |
||
| Assertion | domnmuln0 | |- ( ( R e. Domn /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domneq0.b | |- B = ( Base ` R ) |
|
| 2 | domneq0.t | |- .x. = ( .r ` R ) |
|
| 3 | domneq0.z | |- .0. = ( 0g ` R ) |
|
| 4 | an4 | |- ( ( ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) <-> ( ( X e. B /\ Y e. B ) /\ ( X =/= .0. /\ Y =/= .0. ) ) ) |
|
| 5 | neanior | |- ( ( X =/= .0. /\ Y =/= .0. ) <-> -. ( X = .0. \/ Y = .0. ) ) |
|
| 6 | 1 2 3 | domneq0 | |- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |
| 7 | 6 | 3expb | |- ( ( R e. Domn /\ ( X e. B /\ Y e. B ) ) -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |
| 8 | 7 | necon3abid | |- ( ( R e. Domn /\ ( X e. B /\ Y e. B ) ) -> ( ( X .x. Y ) =/= .0. <-> -. ( X = .0. \/ Y = .0. ) ) ) |
| 9 | 5 8 | bitr4id | |- ( ( R e. Domn /\ ( X e. B /\ Y e. B ) ) -> ( ( X =/= .0. /\ Y =/= .0. ) <-> ( X .x. Y ) =/= .0. ) ) |
| 10 | 9 | biimpd | |- ( ( R e. Domn /\ ( X e. B /\ Y e. B ) ) -> ( ( X =/= .0. /\ Y =/= .0. ) -> ( X .x. Y ) =/= .0. ) ) |
| 11 | 10 | expimpd | |- ( R e. Domn -> ( ( ( X e. B /\ Y e. B ) /\ ( X =/= .0. /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) ) |
| 12 | 4 11 | biimtrid | |- ( R e. Domn -> ( ( ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) ) |
| 13 | 12 | 3impib | |- ( ( R e. Domn /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) |