This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The LUB of the empty set is the intersection of the base. (Contributed by Zhi Wang, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipoglb0.i | |- I = ( toInc ` F ) |
|
| ipolub0.u | |- ( ph -> U = ( lub ` I ) ) |
||
| ipolub0.f | |- ( ph -> |^| F e. F ) |
||
| ipolub0.v | |- ( ph -> F e. V ) |
||
| Assertion | ipolub0 | |- ( ph -> ( U ` (/) ) = |^| F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipoglb0.i | |- I = ( toInc ` F ) |
|
| 2 | ipolub0.u | |- ( ph -> U = ( lub ` I ) ) |
|
| 3 | ipolub0.f | |- ( ph -> |^| F e. F ) |
|
| 4 | ipolub0.v | |- ( ph -> F e. V ) |
|
| 5 | 0ss | |- (/) C_ F |
|
| 6 | 5 | a1i | |- ( ph -> (/) C_ F ) |
| 7 | uni0 | |- U. (/) = (/) |
|
| 8 | 0ss | |- (/) C_ x |
|
| 9 | 7 8 | eqsstri | |- U. (/) C_ x |
| 10 | 9 | a1i | |- ( x e. F -> U. (/) C_ x ) |
| 11 | 10 | rabeqc | |- { x e. F | U. (/) C_ x } = F |
| 12 | 11 | eqcomi | |- F = { x e. F | U. (/) C_ x } |
| 13 | 12 | inteqi | |- |^| F = |^| { x e. F | U. (/) C_ x } |
| 14 | 13 | a1i | |- ( ph -> |^| F = |^| { x e. F | U. (/) C_ x } ) |
| 15 | 1 4 6 2 14 3 | ipolub | |- ( ph -> ( U ` (/) ) = |^| F ) |