This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping for the inner product operation. (Contributed by NM, 28-Jan-2008) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipcl.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ipcl.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| Assertion | ipf | ⊢ ( 𝑈 ∈ NrmCVec → 𝑃 : ( 𝑋 × 𝑋 ) ⟶ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcl.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ipcl.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 3 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 4 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 5 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 6 | 1 3 4 5 2 | ipval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑃 𝑦 ) = ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) |
| 7 | 1 2 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑃 𝑦 ) ∈ ℂ ) |
| 8 | 6 7 | eqeltrrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ∈ ℂ ) |
| 9 | 8 | 3expib | ⊢ ( 𝑈 ∈ NrmCVec → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ∈ ℂ ) ) |
| 10 | 9 | ralrimivv | ⊢ ( 𝑈 ∈ NrmCVec → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ∈ ℂ ) |
| 11 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) | |
| 12 | 11 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ∈ ℂ ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) : ( 𝑋 × 𝑋 ) ⟶ ℂ ) |
| 13 | 10 12 | sylib | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) : ( 𝑋 × 𝑋 ) ⟶ ℂ ) |
| 14 | 1 3 4 5 2 | dipfval | ⊢ ( 𝑈 ∈ NrmCVec → 𝑃 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) ) |
| 15 | 14 | feq1d | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑃 : ( 𝑋 × 𝑋 ) ⟶ ℂ ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) : ( 𝑋 × 𝑋 ) ⟶ ℂ ) ) |
| 16 | 13 15 | mpbird | ⊢ ( 𝑈 ∈ NrmCVec → 𝑃 : ( 𝑋 × 𝑋 ) ⟶ ℂ ) |