This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The involution function in a star ring is closed in the ring. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srngcl.i | |- .* = ( *r ` R ) |
|
| srngcl.b | |- B = ( Base ` R ) |
||
| Assertion | srngcl | |- ( ( R e. *Ring /\ X e. B ) -> ( .* ` X ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srngcl.i | |- .* = ( *r ` R ) |
|
| 2 | srngcl.b | |- B = ( Base ` R ) |
|
| 3 | eqid | |- ( *rf ` R ) = ( *rf ` R ) |
|
| 4 | 2 1 3 | stafval | |- ( X e. B -> ( ( *rf ` R ) ` X ) = ( .* ` X ) ) |
| 5 | 4 | adantl | |- ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` X ) = ( .* ` X ) ) |
| 6 | 3 2 | srngf1o | |- ( R e. *Ring -> ( *rf ` R ) : B -1-1-onto-> B ) |
| 7 | f1of | |- ( ( *rf ` R ) : B -1-1-onto-> B -> ( *rf ` R ) : B --> B ) |
|
| 8 | 6 7 | syl | |- ( R e. *Ring -> ( *rf ` R ) : B --> B ) |
| 9 | 8 | ffvelcdmda | |- ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` X ) e. B ) |
| 10 | 5 9 | eqeltrrd | |- ( ( R e. *Ring /\ X e. B ) -> ( .* ` X ) e. B ) |