This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The involution function in a star ring is an involution. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srngcl.i | |- .* = ( *r ` R ) |
|
| srngcl.b | |- B = ( Base ` R ) |
||
| Assertion | srngnvl | |- ( ( R e. *Ring /\ X e. B ) -> ( .* ` ( .* ` X ) ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srngcl.i | |- .* = ( *r ` R ) |
|
| 2 | srngcl.b | |- B = ( Base ` R ) |
|
| 3 | 1 2 | srngcl | |- ( ( R e. *Ring /\ X e. B ) -> ( .* ` X ) e. B ) |
| 4 | eqid | |- ( *rf ` R ) = ( *rf ` R ) |
|
| 5 | 2 1 4 | stafval | |- ( ( .* ` X ) e. B -> ( ( *rf ` R ) ` ( .* ` X ) ) = ( .* ` ( .* ` X ) ) ) |
| 6 | 3 5 | syl | |- ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` ( .* ` X ) ) = ( .* ` ( .* ` X ) ) ) |
| 7 | 4 | srngcnv | |- ( R e. *Ring -> ( *rf ` R ) = `' ( *rf ` R ) ) |
| 8 | 7 | adantr | |- ( ( R e. *Ring /\ X e. B ) -> ( *rf ` R ) = `' ( *rf ` R ) ) |
| 9 | 8 | fveq1d | |- ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` ( ( *rf ` R ) ` X ) ) = ( `' ( *rf ` R ) ` ( ( *rf ` R ) ` X ) ) ) |
| 10 | 2 1 4 | stafval | |- ( X e. B -> ( ( *rf ` R ) ` X ) = ( .* ` X ) ) |
| 11 | 10 | adantl | |- ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` X ) = ( .* ` X ) ) |
| 12 | 11 | fveq2d | |- ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` ( ( *rf ` R ) ` X ) ) = ( ( *rf ` R ) ` ( .* ` X ) ) ) |
| 13 | 4 2 | srngf1o | |- ( R e. *Ring -> ( *rf ` R ) : B -1-1-onto-> B ) |
| 14 | f1ocnvfv1 | |- ( ( ( *rf ` R ) : B -1-1-onto-> B /\ X e. B ) -> ( `' ( *rf ` R ) ` ( ( *rf ` R ) ` X ) ) = X ) |
|
| 15 | 13 14 | sylan | |- ( ( R e. *Ring /\ X e. B ) -> ( `' ( *rf ` R ) ` ( ( *rf ` R ) ` X ) ) = X ) |
| 16 | 9 12 15 | 3eqtr3d | |- ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` ( .* ` X ) ) = X ) |
| 17 | 6 16 | eqtr3d | |- ( ( R e. *Ring /\ X e. B ) -> ( .* ` ( .* ` X ) ) = X ) |