This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015) (Proof shortened by AV, 2-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipffval.1 | |- V = ( Base ` W ) |
|
| ipffval.2 | |- ., = ( .i ` W ) |
||
| ipffval.3 | |- .x. = ( .if ` W ) |
||
| Assertion | ipffval | |- .x. = ( x e. V , y e. V |-> ( x ., y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipffval.1 | |- V = ( Base ` W ) |
|
| 2 | ipffval.2 | |- ., = ( .i ` W ) |
|
| 3 | ipffval.3 | |- .x. = ( .if ` W ) |
|
| 4 | fveq2 | |- ( g = W -> ( Base ` g ) = ( Base ` W ) ) |
|
| 5 | 4 1 | eqtr4di | |- ( g = W -> ( Base ` g ) = V ) |
| 6 | fveq2 | |- ( g = W -> ( .i ` g ) = ( .i ` W ) ) |
|
| 7 | 6 2 | eqtr4di | |- ( g = W -> ( .i ` g ) = ., ) |
| 8 | 7 | oveqd | |- ( g = W -> ( x ( .i ` g ) y ) = ( x ., y ) ) |
| 9 | 5 5 8 | mpoeq123dv | |- ( g = W -> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( .i ` g ) y ) ) = ( x e. V , y e. V |-> ( x ., y ) ) ) |
| 10 | df-ipf | |- .if = ( g e. _V |-> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( .i ` g ) y ) ) ) |
|
| 11 | 1 | fvexi | |- V e. _V |
| 12 | 2 | fvexi | |- ., e. _V |
| 13 | 12 | rnex | |- ran ., e. _V |
| 14 | p0ex | |- { (/) } e. _V |
|
| 15 | 13 14 | unex | |- ( ran ., u. { (/) } ) e. _V |
| 16 | df-ov | |- ( x ., y ) = ( ., ` <. x , y >. ) |
|
| 17 | fvrn0 | |- ( ., ` <. x , y >. ) e. ( ran ., u. { (/) } ) |
|
| 18 | 16 17 | eqeltri | |- ( x ., y ) e. ( ran ., u. { (/) } ) |
| 19 | 18 | rgen2w | |- A. x e. V A. y e. V ( x ., y ) e. ( ran ., u. { (/) } ) |
| 20 | 11 11 15 19 | mpoexw | |- ( x e. V , y e. V |-> ( x ., y ) ) e. _V |
| 21 | 9 10 20 | fvmpt | |- ( W e. _V -> ( .if ` W ) = ( x e. V , y e. V |-> ( x ., y ) ) ) |
| 22 | fvprc | |- ( -. W e. _V -> ( .if ` W ) = (/) ) |
|
| 23 | fvprc | |- ( -. W e. _V -> ( Base ` W ) = (/) ) |
|
| 24 | 1 23 | eqtrid | |- ( -. W e. _V -> V = (/) ) |
| 25 | 24 | olcd | |- ( -. W e. _V -> ( V = (/) \/ V = (/) ) ) |
| 26 | 0mpo0 | |- ( ( V = (/) \/ V = (/) ) -> ( x e. V , y e. V |-> ( x ., y ) ) = (/) ) |
|
| 27 | 25 26 | syl | |- ( -. W e. _V -> ( x e. V , y e. V |-> ( x ., y ) ) = (/) ) |
| 28 | 22 27 | eqtr4d | |- ( -. W e. _V -> ( .if ` W ) = ( x e. V , y e. V |-> ( x ., y ) ) ) |
| 29 | 21 28 | pm2.61i | |- ( .if ` W ) = ( x e. V , y e. V |-> ( x ., y ) ) |
| 30 | 3 29 | eqtri | |- .x. = ( x e. V , y e. V |-> ( x ., y ) ) |