This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by AV, 13-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ioorf.1 | |- F = ( x e. ran (,) |-> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) ) |
|
| Assertion | ioorinv | |- ( A e. ran (,) -> ( (,) ` ( F ` A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioorf.1 | |- F = ( x e. ran (,) |-> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) ) |
|
| 2 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 3 | ffn | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
|
| 4 | ovelrn | |- ( (,) Fn ( RR* X. RR* ) -> ( A e. ran (,) <-> E. a e. RR* E. b e. RR* A = ( a (,) b ) ) ) |
|
| 5 | 2 3 4 | mp2b | |- ( A e. ran (,) <-> E. a e. RR* E. b e. RR* A = ( a (,) b ) ) |
| 6 | 1 | ioorinv2 | |- ( ( a (,) b ) =/= (/) -> ( F ` ( a (,) b ) ) = <. a , b >. ) |
| 7 | 6 | fveq2d | |- ( ( a (,) b ) =/= (/) -> ( (,) ` ( F ` ( a (,) b ) ) ) = ( (,) ` <. a , b >. ) ) |
| 8 | df-ov | |- ( a (,) b ) = ( (,) ` <. a , b >. ) |
|
| 9 | 7 8 | eqtr4di | |- ( ( a (,) b ) =/= (/) -> ( (,) ` ( F ` ( a (,) b ) ) ) = ( a (,) b ) ) |
| 10 | df-ne | |- ( A =/= (/) <-> -. A = (/) ) |
|
| 11 | neeq1 | |- ( A = ( a (,) b ) -> ( A =/= (/) <-> ( a (,) b ) =/= (/) ) ) |
|
| 12 | 10 11 | bitr3id | |- ( A = ( a (,) b ) -> ( -. A = (/) <-> ( a (,) b ) =/= (/) ) ) |
| 13 | 2fveq3 | |- ( A = ( a (,) b ) -> ( (,) ` ( F ` A ) ) = ( (,) ` ( F ` ( a (,) b ) ) ) ) |
|
| 14 | id | |- ( A = ( a (,) b ) -> A = ( a (,) b ) ) |
|
| 15 | 13 14 | eqeq12d | |- ( A = ( a (,) b ) -> ( ( (,) ` ( F ` A ) ) = A <-> ( (,) ` ( F ` ( a (,) b ) ) ) = ( a (,) b ) ) ) |
| 16 | 12 15 | imbi12d | |- ( A = ( a (,) b ) -> ( ( -. A = (/) -> ( (,) ` ( F ` A ) ) = A ) <-> ( ( a (,) b ) =/= (/) -> ( (,) ` ( F ` ( a (,) b ) ) ) = ( a (,) b ) ) ) ) |
| 17 | 9 16 | mpbiri | |- ( A = ( a (,) b ) -> ( -. A = (/) -> ( (,) ` ( F ` A ) ) = A ) ) |
| 18 | 17 | a1i | |- ( ( a e. RR* /\ b e. RR* ) -> ( A = ( a (,) b ) -> ( -. A = (/) -> ( (,) ` ( F ` A ) ) = A ) ) ) |
| 19 | 18 | rexlimivv | |- ( E. a e. RR* E. b e. RR* A = ( a (,) b ) -> ( -. A = (/) -> ( (,) ` ( F ` A ) ) = A ) ) |
| 20 | 5 19 | sylbi | |- ( A e. ran (,) -> ( -. A = (/) -> ( (,) ` ( F ` A ) ) = A ) ) |
| 21 | ioorebas | |- ( 0 (,) 0 ) e. ran (,) |
|
| 22 | 1 | ioorval | |- ( ( 0 (,) 0 ) e. ran (,) -> ( F ` ( 0 (,) 0 ) ) = if ( ( 0 (,) 0 ) = (/) , <. 0 , 0 >. , <. inf ( ( 0 (,) 0 ) , RR* , < ) , sup ( ( 0 (,) 0 ) , RR* , < ) >. ) ) |
| 23 | 21 22 | ax-mp | |- ( F ` ( 0 (,) 0 ) ) = if ( ( 0 (,) 0 ) = (/) , <. 0 , 0 >. , <. inf ( ( 0 (,) 0 ) , RR* , < ) , sup ( ( 0 (,) 0 ) , RR* , < ) >. ) |
| 24 | iooid | |- ( 0 (,) 0 ) = (/) |
|
| 25 | 24 | iftruei | |- if ( ( 0 (,) 0 ) = (/) , <. 0 , 0 >. , <. inf ( ( 0 (,) 0 ) , RR* , < ) , sup ( ( 0 (,) 0 ) , RR* , < ) >. ) = <. 0 , 0 >. |
| 26 | 23 25 | eqtri | |- ( F ` ( 0 (,) 0 ) ) = <. 0 , 0 >. |
| 27 | 26 | fveq2i | |- ( (,) ` ( F ` ( 0 (,) 0 ) ) ) = ( (,) ` <. 0 , 0 >. ) |
| 28 | df-ov | |- ( 0 (,) 0 ) = ( (,) ` <. 0 , 0 >. ) |
|
| 29 | 27 28 | eqtr4i | |- ( (,) ` ( F ` ( 0 (,) 0 ) ) ) = ( 0 (,) 0 ) |
| 30 | 24 | eqeq2i | |- ( A = ( 0 (,) 0 ) <-> A = (/) ) |
| 31 | 30 | biimpri | |- ( A = (/) -> A = ( 0 (,) 0 ) ) |
| 32 | 31 | fveq2d | |- ( A = (/) -> ( F ` A ) = ( F ` ( 0 (,) 0 ) ) ) |
| 33 | 32 | fveq2d | |- ( A = (/) -> ( (,) ` ( F ` A ) ) = ( (,) ` ( F ` ( 0 (,) 0 ) ) ) ) |
| 34 | 29 33 31 | 3eqtr4a | |- ( A = (/) -> ( (,) ` ( F ` A ) ) = A ) |
| 35 | 20 34 | pm2.61d2 | |- ( A e. ran (,) -> ( (,) ` ( F ` A ) ) = A ) |