This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for the distance from the center of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iooabslt.1 | |- ( ph -> A e. RR ) |
|
| iooabslt.2 | |- ( ph -> B e. RR ) |
||
| iooabslt.3 | |- ( ph -> C e. ( ( A - B ) (,) ( A + B ) ) ) |
||
| Assertion | iooabslt | |- ( ph -> ( abs ` ( A - C ) ) < B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooabslt.1 | |- ( ph -> A e. RR ) |
|
| 2 | iooabslt.2 | |- ( ph -> B e. RR ) |
|
| 3 | iooabslt.3 | |- ( ph -> C e. ( ( A - B ) (,) ( A + B ) ) ) |
|
| 4 | 1 | recnd | |- ( ph -> A e. CC ) |
| 5 | elioore | |- ( C e. ( ( A - B ) (,) ( A + B ) ) -> C e. RR ) |
|
| 6 | 3 5 | syl | |- ( ph -> C e. RR ) |
| 7 | 6 | recnd | |- ( ph -> C e. CC ) |
| 8 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 9 | 8 | cnmetdval | |- ( ( A e. CC /\ C e. CC ) -> ( A ( abs o. - ) C ) = ( abs ` ( A - C ) ) ) |
| 10 | 4 7 9 | syl2anc | |- ( ph -> ( A ( abs o. - ) C ) = ( abs ` ( A - C ) ) ) |
| 11 | eqid | |- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 12 | 11 | bl2ioo | |- ( ( A e. RR /\ B e. RR ) -> ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) B ) = ( ( A - B ) (,) ( A + B ) ) ) |
| 13 | 1 2 12 | syl2anc | |- ( ph -> ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) B ) = ( ( A - B ) (,) ( A + B ) ) ) |
| 14 | 3 13 | eleqtrrd | |- ( ph -> C e. ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) B ) ) |
| 15 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 16 | 15 | a1i | |- ( ph -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 17 | 4 1 | elind | |- ( ph -> A e. ( CC i^i RR ) ) |
| 18 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 19 | 11 | blres | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ A e. ( CC i^i RR ) /\ B e. RR* ) -> ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) B ) = ( ( A ( ball ` ( abs o. - ) ) B ) i^i RR ) ) |
| 20 | 16 17 18 19 | syl3anc | |- ( ph -> ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) B ) = ( ( A ( ball ` ( abs o. - ) ) B ) i^i RR ) ) |
| 21 | 14 20 | eleqtrd | |- ( ph -> C e. ( ( A ( ball ` ( abs o. - ) ) B ) i^i RR ) ) |
| 22 | elin | |- ( C e. ( ( A ( ball ` ( abs o. - ) ) B ) i^i RR ) <-> ( C e. ( A ( ball ` ( abs o. - ) ) B ) /\ C e. RR ) ) |
|
| 23 | 21 22 | sylib | |- ( ph -> ( C e. ( A ( ball ` ( abs o. - ) ) B ) /\ C e. RR ) ) |
| 24 | 23 | simpld | |- ( ph -> C e. ( A ( ball ` ( abs o. - ) ) B ) ) |
| 25 | elbl | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ A e. CC /\ B e. RR* ) -> ( C e. ( A ( ball ` ( abs o. - ) ) B ) <-> ( C e. CC /\ ( A ( abs o. - ) C ) < B ) ) ) |
|
| 26 | 16 4 18 25 | syl3anc | |- ( ph -> ( C e. ( A ( ball ` ( abs o. - ) ) B ) <-> ( C e. CC /\ ( A ( abs o. - ) C ) < B ) ) ) |
| 27 | 24 26 | mpbid | |- ( ph -> ( C e. CC /\ ( A ( abs o. - ) C ) < B ) ) |
| 28 | 27 | simprd | |- ( ph -> ( A ( abs o. - ) C ) < B ) |
| 29 | 10 28 | eqbrtrrd | |- ( ph -> ( abs ` ( A - C ) ) < B ) |