This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gtnelicc.a | |- ( ph -> A e. RR* ) |
|
| gtnelicc.b | |- ( ph -> B e. RR ) |
||
| gtnelicc.c | |- ( ph -> C e. RR* ) |
||
| gtnelicc.bltc | |- ( ph -> B < C ) |
||
| Assertion | gtnelicc | |- ( ph -> -. C e. ( A [,] B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gtnelicc.a | |- ( ph -> A e. RR* ) |
|
| 2 | gtnelicc.b | |- ( ph -> B e. RR ) |
|
| 3 | gtnelicc.c | |- ( ph -> C e. RR* ) |
|
| 4 | gtnelicc.bltc | |- ( ph -> B < C ) |
|
| 5 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 6 | xrltnle | |- ( ( B e. RR* /\ C e. RR* ) -> ( B < C <-> -. C <_ B ) ) |
|
| 7 | 5 3 6 | syl2anc | |- ( ph -> ( B < C <-> -. C <_ B ) ) |
| 8 | 4 7 | mpbid | |- ( ph -> -. C <_ B ) |
| 9 | 8 | intnand | |- ( ph -> -. ( A <_ C /\ C <_ B ) ) |
| 10 | elicc4 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) ) |
|
| 11 | 1 5 3 10 | syl3anc | |- ( ph -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) ) |
| 12 | 9 11 | mtbird | |- ( ph -> -. C e. ( A [,] B ) ) |