This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit at the upper bound of a continuous function defined on a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ioccncflimc.a | |- ( ph -> A e. RR* ) |
|
| ioccncflimc.b | |- ( ph -> B e. RR ) |
||
| ioccncflimc.altb | |- ( ph -> A < B ) |
||
| ioccncflimc.f | |- ( ph -> F e. ( ( A (,] B ) -cn-> CC ) ) |
||
| Assertion | ioccncflimc | |- ( ph -> ( F ` B ) e. ( ( F |` ( A (,) B ) ) limCC B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioccncflimc.a | |- ( ph -> A e. RR* ) |
|
| 2 | ioccncflimc.b | |- ( ph -> B e. RR ) |
|
| 3 | ioccncflimc.altb | |- ( ph -> A < B ) |
|
| 4 | ioccncflimc.f | |- ( ph -> F e. ( ( A (,] B ) -cn-> CC ) ) |
|
| 5 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 6 | 2 | leidd | |- ( ph -> B <_ B ) |
| 7 | 1 5 5 3 6 | eliocd | |- ( ph -> B e. ( A (,] B ) ) |
| 8 | 4 7 | cnlimci | |- ( ph -> ( F ` B ) e. ( F limCC B ) ) |
| 9 | cncfrss | |- ( F e. ( ( A (,] B ) -cn-> CC ) -> ( A (,] B ) C_ CC ) |
|
| 10 | 4 9 | syl | |- ( ph -> ( A (,] B ) C_ CC ) |
| 11 | ssid | |- CC C_ CC |
|
| 12 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 13 | eqid | |- ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) |
|
| 14 | eqid | |- ( ( TopOpen ` CCfld ) |`t CC ) = ( ( TopOpen ` CCfld ) |`t CC ) |
|
| 15 | 12 13 14 | cncfcn | |- ( ( ( A (,] B ) C_ CC /\ CC C_ CC ) -> ( ( A (,] B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
| 16 | 10 11 15 | sylancl | |- ( ph -> ( ( A (,] B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
| 17 | 4 16 | eleqtrd | |- ( ph -> F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) ) |
| 18 | 12 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 19 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( A (,] B ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) e. ( TopOn ` ( A (,] B ) ) ) |
|
| 20 | 18 10 19 | sylancr | |- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) e. ( TopOn ` ( A (,] B ) ) ) |
| 21 | 12 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 22 | unicntop | |- CC = U. ( TopOpen ` CCfld ) |
|
| 23 | 22 | restid | |- ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
| 24 | 21 23 | ax-mp | |- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
| 25 | 24 | cnfldtopon | |- ( ( TopOpen ` CCfld ) |`t CC ) e. ( TopOn ` CC ) |
| 26 | cncnp | |- ( ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) e. ( TopOn ` ( A (,] B ) ) /\ ( ( TopOpen ` CCfld ) |`t CC ) e. ( TopOn ` CC ) ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) <-> ( F : ( A (,] B ) --> CC /\ A. x e. ( A (,] B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) CnP ( ( TopOpen ` CCfld ) |`t CC ) ) ` x ) ) ) ) |
|
| 27 | 20 25 26 | sylancl | |- ( ph -> ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t CC ) ) <-> ( F : ( A (,] B ) --> CC /\ A. x e. ( A (,] B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) CnP ( ( TopOpen ` CCfld ) |`t CC ) ) ` x ) ) ) ) |
| 28 | 17 27 | mpbid | |- ( ph -> ( F : ( A (,] B ) --> CC /\ A. x e. ( A (,] B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) CnP ( ( TopOpen ` CCfld ) |`t CC ) ) ` x ) ) ) |
| 29 | 28 | simpld | |- ( ph -> F : ( A (,] B ) --> CC ) |
| 30 | ioossioc | |- ( A (,) B ) C_ ( A (,] B ) |
|
| 31 | 30 | a1i | |- ( ph -> ( A (,) B ) C_ ( A (,] B ) ) |
| 32 | eqid | |- ( ( TopOpen ` CCfld ) |`t ( ( A (,] B ) u. { B } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A (,] B ) u. { B } ) ) |
|
| 33 | 2 | recnd | |- ( ph -> B e. CC ) |
| 34 | 22 | ntrtop | |- ( ( TopOpen ` CCfld ) e. Top -> ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC ) |
| 35 | 21 34 | ax-mp | |- ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC |
| 36 | undif | |- ( ( A (,] B ) C_ CC <-> ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) = CC ) |
|
| 37 | 10 36 | sylib | |- ( ph -> ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) = CC ) |
| 38 | 37 | eqcomd | |- ( ph -> CC = ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) |
| 39 | 38 | fveq2d | |- ( ph -> ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) ) |
| 40 | 35 39 | eqtr3id | |- ( ph -> CC = ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) ) |
| 41 | 33 40 | eleqtrd | |- ( ph -> B e. ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) ) |
| 42 | 41 7 | elind | |- ( ph -> B e. ( ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) i^i ( A (,] B ) ) ) |
| 43 | 21 | a1i | |- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
| 44 | ssid | |- ( A (,] B ) C_ ( A (,] B ) |
|
| 45 | 44 | a1i | |- ( ph -> ( A (,] B ) C_ ( A (,] B ) ) |
| 46 | 22 13 | restntr | |- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A (,] B ) C_ CC /\ ( A (,] B ) C_ ( A (,] B ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) ` ( A (,] B ) ) = ( ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) i^i ( A (,] B ) ) ) |
| 47 | 43 10 45 46 | syl3anc | |- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) ` ( A (,] B ) ) = ( ( ( int ` ( TopOpen ` CCfld ) ) ` ( ( A (,] B ) u. ( CC \ ( A (,] B ) ) ) ) i^i ( A (,] B ) ) ) |
| 48 | 42 47 | eleqtrrd | |- ( ph -> B e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) ` ( A (,] B ) ) ) |
| 49 | 7 | snssd | |- ( ph -> { B } C_ ( A (,] B ) ) |
| 50 | ssequn2 | |- ( { B } C_ ( A (,] B ) <-> ( ( A (,] B ) u. { B } ) = ( A (,] B ) ) |
|
| 51 | 49 50 | sylib | |- ( ph -> ( ( A (,] B ) u. { B } ) = ( A (,] B ) ) |
| 52 | 51 | eqcomd | |- ( ph -> ( A (,] B ) = ( ( A (,] B ) u. { B } ) ) |
| 53 | 52 | oveq2d | |- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A (,] B ) u. { B } ) ) ) |
| 54 | 53 | fveq2d | |- ( ph -> ( int ` ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) = ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,] B ) u. { B } ) ) ) ) |
| 55 | ioounsn | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) |
|
| 56 | 1 5 3 55 | syl3anc | |- ( ph -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) |
| 57 | 56 | eqcomd | |- ( ph -> ( A (,] B ) = ( ( A (,) B ) u. { B } ) ) |
| 58 | 54 57 | fveq12d | |- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) ` ( A (,] B ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,] B ) u. { B } ) ) ) ` ( ( A (,) B ) u. { B } ) ) ) |
| 59 | 48 58 | eleqtrd | |- ( ph -> B e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,] B ) u. { B } ) ) ) ` ( ( A (,) B ) u. { B } ) ) ) |
| 60 | 29 31 10 12 32 59 | limcres | |- ( ph -> ( ( F |` ( A (,) B ) ) limCC B ) = ( F limCC B ) ) |
| 61 | 8 60 | eleqtrrd | |- ( ph -> ( F ` B ) e. ( ( F |` ( A (,) B ) ) limCC B ) ) |