This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnlimci.f | |- ( ph -> F e. ( A -cn-> D ) ) |
|
| cnlimci.c | |- ( ph -> B e. A ) |
||
| Assertion | cnlimci | |- ( ph -> ( F ` B ) e. ( F limCC B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlimci.f | |- ( ph -> F e. ( A -cn-> D ) ) |
|
| 2 | cnlimci.c | |- ( ph -> B e. A ) |
|
| 3 | fveq2 | |- ( x = B -> ( F ` x ) = ( F ` B ) ) |
|
| 4 | oveq2 | |- ( x = B -> ( F limCC x ) = ( F limCC B ) ) |
|
| 5 | 3 4 | eleq12d | |- ( x = B -> ( ( F ` x ) e. ( F limCC x ) <-> ( F ` B ) e. ( F limCC B ) ) ) |
| 6 | cncfrss | |- ( F e. ( A -cn-> D ) -> A C_ CC ) |
|
| 7 | 1 6 | syl | |- ( ph -> A C_ CC ) |
| 8 | cncfrss2 | |- ( F e. ( A -cn-> D ) -> D C_ CC ) |
|
| 9 | 1 8 | syl | |- ( ph -> D C_ CC ) |
| 10 | ssid | |- CC C_ CC |
|
| 11 | cncfss | |- ( ( D C_ CC /\ CC C_ CC ) -> ( A -cn-> D ) C_ ( A -cn-> CC ) ) |
|
| 12 | 9 10 11 | sylancl | |- ( ph -> ( A -cn-> D ) C_ ( A -cn-> CC ) ) |
| 13 | 12 1 | sseldd | |- ( ph -> F e. ( A -cn-> CC ) ) |
| 14 | cnlimc | |- ( A C_ CC -> ( F e. ( A -cn-> CC ) <-> ( F : A --> CC /\ A. x e. A ( F ` x ) e. ( F limCC x ) ) ) ) |
|
| 15 | 14 | simplbda | |- ( ( A C_ CC /\ F e. ( A -cn-> CC ) ) -> A. x e. A ( F ` x ) e. ( F limCC x ) ) |
| 16 | 7 13 15 | syl2anc | |- ( ph -> A. x e. A ( F ` x ) e. ( F limCC x ) ) |
| 17 | 5 16 2 | rspcdva | |- ( ph -> ( F ` B ) e. ( F limCC B ) ) |