This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of the inverse of an isomorphism is itself. Proposition 3.14(1) of Adamek p. 29. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | |- B = ( Base ` C ) |
|
| invfval.n | |- N = ( Inv ` C ) |
||
| invfval.c | |- ( ph -> C e. Cat ) |
||
| invss.x | |- ( ph -> X e. B ) |
||
| invss.y | |- ( ph -> Y e. B ) |
||
| isoval.n | |- I = ( Iso ` C ) |
||
| invinv.f | |- ( ph -> F e. ( X I Y ) ) |
||
| Assertion | invinv | |- ( ph -> ( ( Y N X ) ` ( ( X N Y ) ` F ) ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | |- B = ( Base ` C ) |
|
| 2 | invfval.n | |- N = ( Inv ` C ) |
|
| 3 | invfval.c | |- ( ph -> C e. Cat ) |
|
| 4 | invss.x | |- ( ph -> X e. B ) |
|
| 5 | invss.y | |- ( ph -> Y e. B ) |
|
| 6 | isoval.n | |- I = ( Iso ` C ) |
|
| 7 | invinv.f | |- ( ph -> F e. ( X I Y ) ) |
|
| 8 | 1 2 3 4 5 | invsym2 | |- ( ph -> `' ( X N Y ) = ( Y N X ) ) |
| 9 | 8 | fveq1d | |- ( ph -> ( `' ( X N Y ) ` ( ( X N Y ) ` F ) ) = ( ( Y N X ) ` ( ( X N Y ) ` F ) ) ) |
| 10 | 1 2 3 4 5 6 | invf1o | |- ( ph -> ( X N Y ) : ( X I Y ) -1-1-onto-> ( Y I X ) ) |
| 11 | f1ocnvfv1 | |- ( ( ( X N Y ) : ( X I Y ) -1-1-onto-> ( Y I X ) /\ F e. ( X I Y ) ) -> ( `' ( X N Y ) ` ( ( X N Y ) ` F ) ) = F ) |
|
| 12 | 10 7 11 | syl2anc | |- ( ph -> ( `' ( X N Y ) ` ( ( X N Y ) ` F ) ) = F ) |
| 13 | 9 12 | eqtr3d | |- ( ph -> ( ( Y N X ) ` ( ( X N Y ) ` F ) ) = F ) |