This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of the inverse of an isomorphism is itself. Proposition 3.14(1) of Adamek p. 29. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | ||
| invfval.n | |||
| invfval.c | |||
| invss.x | |||
| invss.y | |||
| isoval.n | |||
| invinv.f | |||
| Assertion | invinv |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | ||
| 2 | invfval.n | ||
| 3 | invfval.c | ||
| 4 | invss.x | ||
| 5 | invss.y | ||
| 6 | isoval.n | ||
| 7 | invinv.f | ||
| 8 | 1 2 3 4 5 | invsym2 | |
| 9 | 8 | fveq1d | |
| 10 | 1 2 3 4 5 6 | invf1o | |
| 11 | f1ocnvfv1 | ||
| 12 | 10 7 11 | syl2anc | |
| 13 | 9 12 | eqtr3d |