This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse relation is a bijection from isomorphisms to isomorphisms. This means that every isomorphism F e. ( X I Y ) has a unique inverse, denoted by ( ( InvC )F ) . Remark 3.12 of Adamek p. 28. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | |- B = ( Base ` C ) |
|
| invfval.n | |- N = ( Inv ` C ) |
||
| invfval.c | |- ( ph -> C e. Cat ) |
||
| invss.x | |- ( ph -> X e. B ) |
||
| invss.y | |- ( ph -> Y e. B ) |
||
| isoval.n | |- I = ( Iso ` C ) |
||
| Assertion | invf1o | |- ( ph -> ( X N Y ) : ( X I Y ) -1-1-onto-> ( Y I X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | |- B = ( Base ` C ) |
|
| 2 | invfval.n | |- N = ( Inv ` C ) |
|
| 3 | invfval.c | |- ( ph -> C e. Cat ) |
|
| 4 | invss.x | |- ( ph -> X e. B ) |
|
| 5 | invss.y | |- ( ph -> Y e. B ) |
|
| 6 | isoval.n | |- I = ( Iso ` C ) |
|
| 7 | 1 2 3 4 5 6 | invf | |- ( ph -> ( X N Y ) : ( X I Y ) --> ( Y I X ) ) |
| 8 | 7 | ffnd | |- ( ph -> ( X N Y ) Fn ( X I Y ) ) |
| 9 | 1 2 3 5 4 6 | invf | |- ( ph -> ( Y N X ) : ( Y I X ) --> ( X I Y ) ) |
| 10 | 9 | ffnd | |- ( ph -> ( Y N X ) Fn ( Y I X ) ) |
| 11 | 1 2 3 4 5 | invsym2 | |- ( ph -> `' ( X N Y ) = ( Y N X ) ) |
| 12 | 11 | fneq1d | |- ( ph -> ( `' ( X N Y ) Fn ( Y I X ) <-> ( Y N X ) Fn ( Y I X ) ) ) |
| 13 | 10 12 | mpbird | |- ( ph -> `' ( X N Y ) Fn ( Y I X ) ) |
| 14 | dff1o4 | |- ( ( X N Y ) : ( X I Y ) -1-1-onto-> ( Y I X ) <-> ( ( X N Y ) Fn ( X I Y ) /\ `' ( X N Y ) Fn ( Y I X ) ) ) |
|
| 15 | 8 13 14 | sylanbrc | |- ( ph -> ( X N Y ) : ( X I Y ) -1-1-onto-> ( Y I X ) ) |