This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of the inverse of an isomorphism is itself. Proposition 3.14(1) of Adamek p. 29. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| invss.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| invss.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| isoval.n | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| invinv.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | ||
| Assertion | invinv | ⊢ ( 𝜑 → ( ( 𝑌 𝑁 𝑋 ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 3 | invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | invss.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | invss.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | isoval.n | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 7 | invinv.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | |
| 8 | 1 2 3 4 5 | invsym2 | ⊢ ( 𝜑 → ◡ ( 𝑋 𝑁 𝑌 ) = ( 𝑌 𝑁 𝑋 ) ) |
| 9 | 8 | fveq1d | ⊢ ( 𝜑 → ( ◡ ( 𝑋 𝑁 𝑌 ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) = ( ( 𝑌 𝑁 𝑋 ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) ) |
| 10 | 1 2 3 4 5 6 | invf1o | ⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) : ( 𝑋 𝐼 𝑌 ) –1-1-onto→ ( 𝑌 𝐼 𝑋 ) ) |
| 11 | f1ocnvfv1 | ⊢ ( ( ( 𝑋 𝑁 𝑌 ) : ( 𝑋 𝐼 𝑌 ) –1-1-onto→ ( 𝑌 𝐼 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( ◡ ( 𝑋 𝑁 𝑌 ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) = 𝐹 ) | |
| 12 | 10 7 11 | syl2anc | ⊢ ( 𝜑 → ( ◡ ( 𝑋 𝑁 𝑌 ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) = 𝐹 ) |
| 13 | 9 12 | eqtr3d | ⊢ ( 𝜑 → ( ( 𝑌 𝑁 𝑋 ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) = 𝐹 ) |