This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | |- B = ( Base ` C ) |
|
| invfval.n | |- N = ( Inv ` C ) |
||
| invfval.c | |- ( ph -> C e. Cat ) |
||
| invss.x | |- ( ph -> X e. B ) |
||
| invss.y | |- ( ph -> Y e. B ) |
||
| Assertion | invsym2 | |- ( ph -> `' ( X N Y ) = ( Y N X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | |- B = ( Base ` C ) |
|
| 2 | invfval.n | |- N = ( Inv ` C ) |
|
| 3 | invfval.c | |- ( ph -> C e. Cat ) |
|
| 4 | invss.x | |- ( ph -> X e. B ) |
|
| 5 | invss.y | |- ( ph -> Y e. B ) |
|
| 6 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 7 | 1 2 3 5 4 6 | invss | |- ( ph -> ( Y N X ) C_ ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) ) |
| 8 | relxp | |- Rel ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) |
|
| 9 | relss | |- ( ( Y N X ) C_ ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) -> ( Rel ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) -> Rel ( Y N X ) ) ) |
|
| 10 | 7 8 9 | mpisyl | |- ( ph -> Rel ( Y N X ) ) |
| 11 | relcnv | |- Rel `' ( X N Y ) |
|
| 12 | 10 11 | jctil | |- ( ph -> ( Rel `' ( X N Y ) /\ Rel ( Y N X ) ) ) |
| 13 | 1 2 3 4 5 | invsym | |- ( ph -> ( f ( X N Y ) g <-> g ( Y N X ) f ) ) |
| 14 | vex | |- g e. _V |
|
| 15 | vex | |- f e. _V |
|
| 16 | 14 15 | brcnv | |- ( g `' ( X N Y ) f <-> f ( X N Y ) g ) |
| 17 | df-br | |- ( g `' ( X N Y ) f <-> <. g , f >. e. `' ( X N Y ) ) |
|
| 18 | 16 17 | bitr3i | |- ( f ( X N Y ) g <-> <. g , f >. e. `' ( X N Y ) ) |
| 19 | df-br | |- ( g ( Y N X ) f <-> <. g , f >. e. ( Y N X ) ) |
|
| 20 | 13 18 19 | 3bitr3g | |- ( ph -> ( <. g , f >. e. `' ( X N Y ) <-> <. g , f >. e. ( Y N X ) ) ) |
| 21 | 20 | eqrelrdv2 | |- ( ( ( Rel `' ( X N Y ) /\ Rel ( Y N X ) ) /\ ph ) -> `' ( X N Y ) = ( Y N X ) ) |
| 22 | 12 21 | mpancom | |- ( ph -> `' ( X N Y ) = ( Y N X ) ) |