This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invisoinv.b | ||
| invisoinv.i | |||
| invisoinv.n | |||
| invisoinv.c | |||
| invisoinv.x | |||
| invisoinv.y | |||
| invisoinv.f | |||
| invcoisoid.1 | |||
| invcoisoid.o | No typesetting found for |- .o. = ( <. X , Y >. ( comp ` C ) X ) with typecode |- | ||
| Assertion | invcoisoid | Could not format assertion : No typesetting found for |- ( ph -> ( ( ( X N Y ) ` F ) .o. F ) = ( .1. ` X ) ) with typecode |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invisoinv.b | ||
| 2 | invisoinv.i | ||
| 3 | invisoinv.n | ||
| 4 | invisoinv.c | ||
| 5 | invisoinv.x | ||
| 6 | invisoinv.y | ||
| 7 | invisoinv.f | ||
| 8 | invcoisoid.1 | ||
| 9 | invcoisoid.o | Could not format .o. = ( <. X , Y >. ( comp ` C ) X ) : No typesetting found for |- .o. = ( <. X , Y >. ( comp ` C ) X ) with typecode |- | |
| 10 | 1 2 3 4 5 6 7 | invisoinvr | |
| 11 | eqid | ||
| 12 | 1 3 4 5 6 11 | isinv | |
| 13 | simpl | ||
| 14 | 12 13 | biimtrdi | |
| 15 | 10 14 | mpd | |
| 16 | eqid | ||
| 17 | eqid | ||
| 18 | 1 16 2 4 5 6 | isohom | |
| 19 | 18 7 | sseldd | |
| 20 | 1 16 2 4 6 5 | isohom | |
| 21 | 1 3 4 5 6 2 | invf | |
| 22 | 21 7 | ffvelcdmd | |
| 23 | 20 22 | sseldd | |
| 24 | 1 16 17 8 11 4 5 6 19 23 | issect2 | |
| 25 | 9 | a1i | Could not format ( ph -> .o. = ( <. X , Y >. ( comp ` C ) X ) ) : No typesetting found for |- ( ph -> .o. = ( <. X , Y >. ( comp ` C ) X ) ) with typecode |- |
| 26 | 25 | eqcomd | Could not format ( ph -> ( <. X , Y >. ( comp ` C ) X ) = .o. ) : No typesetting found for |- ( ph -> ( <. X , Y >. ( comp ` C ) X ) = .o. ) with typecode |- |
| 27 | 26 | oveqd | Could not format ( ph -> ( ( ( X N Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( ( X N Y ) ` F ) .o. F ) ) : No typesetting found for |- ( ph -> ( ( ( X N Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( ( X N Y ) ` F ) .o. F ) ) with typecode |- |
| 28 | 27 | eqeq1d | Could not format ( ph -> ( ( ( ( X N Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( .1. ` X ) <-> ( ( ( X N Y ) ` F ) .o. F ) = ( .1. ` X ) ) ) : No typesetting found for |- ( ph -> ( ( ( ( X N Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( .1. ` X ) <-> ( ( ( X N Y ) ` F ) .o. F ) = ( .1. ` X ) ) ) with typecode |- |
| 29 | 24 28 | bitrd | Could not format ( ph -> ( F ( X ( Sect ` C ) Y ) ( ( X N Y ) ` F ) <-> ( ( ( X N Y ) ` F ) .o. F ) = ( .1. ` X ) ) ) : No typesetting found for |- ( ph -> ( F ( X ( Sect ` C ) Y ) ( ( X N Y ) ` F ) <-> ( ( ( X N Y ) ` F ) .o. F ) = ( .1. ` X ) ) ) with typecode |- |
| 30 | 15 29 | mpbid | Could not format ( ph -> ( ( ( X N Y ) ` F ) .o. F ) = ( .1. ` X ) ) : No typesetting found for |- ( ph -> ( ( ( X N Y ) ` F ) .o. F ) = ( .1. ` X ) ) with typecode |- |