This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intfrac2 . (Contributed by NM, 16-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | intfracq.1 | ⊢ 𝑍 = ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) | |
| intfracq.2 | ⊢ 𝐹 = ( ( 𝑀 / 𝑁 ) − 𝑍 ) | ||
| Assertion | intfracq | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 0 ≤ 𝐹 ∧ 𝐹 ≤ ( ( 𝑁 − 1 ) / 𝑁 ) ∧ ( 𝑀 / 𝑁 ) = ( 𝑍 + 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intfracq.1 | ⊢ 𝑍 = ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) | |
| 2 | intfracq.2 | ⊢ 𝐹 = ( ( 𝑀 / 𝑁 ) − 𝑍 ) | |
| 3 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℝ ) |
| 5 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
| 7 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ≠ 0 ) |
| 9 | 4 6 8 | redivcld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 / 𝑁 ) ∈ ℝ ) |
| 10 | 1 2 | intfrac2 | ⊢ ( ( 𝑀 / 𝑁 ) ∈ ℝ → ( 0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ ( 𝑀 / 𝑁 ) = ( 𝑍 + 𝐹 ) ) ) |
| 11 | 9 10 | syl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ ( 𝑀 / 𝑁 ) = ( 𝑍 + 𝐹 ) ) ) |
| 12 | 11 | simp1d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 0 ≤ 𝐹 ) |
| 13 | fraclt1 | ⊢ ( ( 𝑀 / 𝑁 ) ∈ ℝ → ( ( 𝑀 / 𝑁 ) − ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) < 1 ) | |
| 14 | 9 13 | syl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 / 𝑁 ) − ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) < 1 ) |
| 15 | 1 | oveq2i | ⊢ ( ( 𝑀 / 𝑁 ) − 𝑍 ) = ( ( 𝑀 / 𝑁 ) − ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) |
| 16 | 2 15 | eqtri | ⊢ 𝐹 = ( ( 𝑀 / 𝑁 ) − ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) |
| 17 | 16 | a1i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐹 = ( ( 𝑀 / 𝑁 ) − ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ) |
| 18 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 19 | 18 7 | dividd | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 / 𝑁 ) = 1 ) |
| 20 | 19 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 / 𝑁 ) = 1 ) |
| 21 | 14 17 20 | 3brtr4d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐹 < ( 𝑁 / 𝑁 ) ) |
| 22 | reflcl | ⊢ ( ( 𝑀 / 𝑁 ) ∈ ℝ → ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ∈ ℝ ) | |
| 23 | 9 22 | syl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ∈ ℝ ) |
| 24 | 1 23 | eqeltrid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑍 ∈ ℝ ) |
| 25 | 9 24 | resubcld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 / 𝑁 ) − 𝑍 ) ∈ ℝ ) |
| 26 | 2 25 | eqeltrid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐹 ∈ ℝ ) |
| 27 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 28 | 5 27 | jca | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) |
| 29 | 28 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) |
| 30 | ltmuldiv2 | ⊢ ( ( 𝐹 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( ( 𝑁 · 𝐹 ) < 𝑁 ↔ 𝐹 < ( 𝑁 / 𝑁 ) ) ) | |
| 31 | 26 6 29 30 | syl3anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 · 𝐹 ) < 𝑁 ↔ 𝐹 < ( 𝑁 / 𝑁 ) ) ) |
| 32 | 21 31 | mpbird | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · 𝐹 ) < 𝑁 ) |
| 33 | 2 | oveq2i | ⊢ ( 𝑁 · 𝐹 ) = ( 𝑁 · ( ( 𝑀 / 𝑁 ) − 𝑍 ) ) |
| 34 | 18 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
| 35 | 9 | recnd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 / 𝑁 ) ∈ ℂ ) |
| 36 | 9 | flcld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ∈ ℤ ) |
| 37 | 1 36 | eqeltrid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑍 ∈ ℤ ) |
| 38 | 37 | zcnd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑍 ∈ ℂ ) |
| 39 | 34 35 38 | subdid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · ( ( 𝑀 / 𝑁 ) − 𝑍 ) ) = ( ( 𝑁 · ( 𝑀 / 𝑁 ) ) − ( 𝑁 · 𝑍 ) ) ) |
| 40 | 33 39 | eqtrid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · 𝐹 ) = ( ( 𝑁 · ( 𝑀 / 𝑁 ) ) − ( 𝑁 · 𝑍 ) ) ) |
| 41 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 42 | 41 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℂ ) |
| 43 | 42 34 8 | divcan2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · ( 𝑀 / 𝑁 ) ) = 𝑀 ) |
| 44 | simpl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℤ ) | |
| 45 | 43 44 | eqeltrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · ( 𝑀 / 𝑁 ) ) ∈ ℤ ) |
| 46 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 47 | 46 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
| 48 | 47 37 | zmulcld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · 𝑍 ) ∈ ℤ ) |
| 49 | 45 48 | zsubcld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 · ( 𝑀 / 𝑁 ) ) − ( 𝑁 · 𝑍 ) ) ∈ ℤ ) |
| 50 | 40 49 | eqeltrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · 𝐹 ) ∈ ℤ ) |
| 51 | zltlem1 | ⊢ ( ( ( 𝑁 · 𝐹 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 · 𝐹 ) < 𝑁 ↔ ( 𝑁 · 𝐹 ) ≤ ( 𝑁 − 1 ) ) ) | |
| 52 | 50 47 51 | syl2anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 · 𝐹 ) < 𝑁 ↔ ( 𝑁 · 𝐹 ) ≤ ( 𝑁 − 1 ) ) ) |
| 53 | 32 52 | mpbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · 𝐹 ) ≤ ( 𝑁 − 1 ) ) |
| 54 | peano2rem | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 − 1 ) ∈ ℝ ) | |
| 55 | 5 54 | syl | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℝ ) |
| 56 | 55 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 − 1 ) ∈ ℝ ) |
| 57 | lemuldiv2 | ⊢ ( ( 𝐹 ∈ ℝ ∧ ( 𝑁 − 1 ) ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( ( 𝑁 · 𝐹 ) ≤ ( 𝑁 − 1 ) ↔ 𝐹 ≤ ( ( 𝑁 − 1 ) / 𝑁 ) ) ) | |
| 58 | 26 56 29 57 | syl3anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 · 𝐹 ) ≤ ( 𝑁 − 1 ) ↔ 𝐹 ≤ ( ( 𝑁 − 1 ) / 𝑁 ) ) ) |
| 59 | 53 58 | mpbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐹 ≤ ( ( 𝑁 − 1 ) / 𝑁 ) ) |
| 60 | 11 | simp3d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 / 𝑁 ) = ( 𝑍 + 𝐹 ) ) |
| 61 | 12 59 60 | 3jca | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 0 ≤ 𝐹 ∧ 𝐹 ≤ ( ( 𝑁 − 1 ) / 𝑁 ) ∧ ( 𝑀 / 𝑁 ) = ( 𝑍 + 𝐹 ) ) ) |