This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opnneiid | |- ( J e. Top -> ( N e. ( ( nei ` J ) ` N ) <-> N e. J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neii2 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` N ) ) -> E. x e. J ( N C_ x /\ x C_ N ) ) |
|
| 2 | eqss | |- ( N = x <-> ( N C_ x /\ x C_ N ) ) |
|
| 3 | eleq1a | |- ( x e. J -> ( N = x -> N e. J ) ) |
|
| 4 | 2 3 | biimtrrid | |- ( x e. J -> ( ( N C_ x /\ x C_ N ) -> N e. J ) ) |
| 5 | 4 | rexlimiv | |- ( E. x e. J ( N C_ x /\ x C_ N ) -> N e. J ) |
| 6 | 1 5 | syl | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` N ) ) -> N e. J ) |
| 7 | 6 | ex | |- ( J e. Top -> ( N e. ( ( nei ` J ) ` N ) -> N e. J ) ) |
| 8 | ssid | |- N C_ N |
|
| 9 | opnneiss | |- ( ( J e. Top /\ N e. J /\ N C_ N ) -> N e. ( ( nei ` J ) ` N ) ) |
|
| 10 | 9 | 3exp | |- ( J e. Top -> ( N e. J -> ( N C_ N -> N e. ( ( nei ` J ) ` N ) ) ) ) |
| 11 | 8 10 | mpii | |- ( J e. Top -> ( N e. J -> N e. ( ( nei ` J ) ` N ) ) ) |
| 12 | 7 11 | impbid | |- ( J e. Top -> ( N e. ( ( nei ` J ) ` N ) <-> N e. J ) ) |