This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function whose restriction is injective and the values of the remaining arguments are different from all other values is injective itself. (Contributed by Alexander van der Vekens, 31-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | injresinj | |- ( K e. NN0 -> ( ( F : ( 0 ... K ) --> V /\ Fun `' ( F |` ( 1 ..^ K ) ) /\ ( F ` 0 ) =/= ( F ` K ) ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> Fun `' F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzo0ss1 | |- ( 1 ..^ K ) C_ ( 0 ..^ K ) |
|
| 2 | fzossfz | |- ( 0 ..^ K ) C_ ( 0 ... K ) |
|
| 3 | 1 2 | sstri | |- ( 1 ..^ K ) C_ ( 0 ... K ) |
| 4 | fssres | |- ( ( F : ( 0 ... K ) --> V /\ ( 1 ..^ K ) C_ ( 0 ... K ) ) -> ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) --> V ) |
|
| 5 | 3 4 | mpan2 | |- ( F : ( 0 ... K ) --> V -> ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) --> V ) |
| 6 | 5 | biantrud | |- ( F : ( 0 ... K ) --> V -> ( Fun `' ( F |` ( 1 ..^ K ) ) <-> ( Fun `' ( F |` ( 1 ..^ K ) ) /\ ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) --> V ) ) ) |
| 7 | ancom | |- ( ( Fun `' ( F |` ( 1 ..^ K ) ) /\ ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) --> V ) <-> ( ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) --> V /\ Fun `' ( F |` ( 1 ..^ K ) ) ) ) |
|
| 8 | df-f1 | |- ( ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) -1-1-> V <-> ( ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) --> V /\ Fun `' ( F |` ( 1 ..^ K ) ) ) ) |
|
| 9 | 7 8 | bitr4i | |- ( ( Fun `' ( F |` ( 1 ..^ K ) ) /\ ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) --> V ) <-> ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) -1-1-> V ) |
| 10 | 6 9 | bitrdi | |- ( F : ( 0 ... K ) --> V -> ( Fun `' ( F |` ( 1 ..^ K ) ) <-> ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) -1-1-> V ) ) |
| 11 | simp-4r | |- ( ( ( ( ( ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) -1-1-> V /\ F : ( 0 ... K ) --> V ) /\ ( F ` 0 ) =/= ( F ` K ) ) /\ K e. NN0 ) /\ ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) ) -> F : ( 0 ... K ) --> V ) |
|
| 12 | dff13 | |- ( ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) -1-1-> V <-> ( ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) --> V /\ A. v e. ( 1 ..^ K ) A. w e. ( 1 ..^ K ) ( ( ( F |` ( 1 ..^ K ) ) ` v ) = ( ( F |` ( 1 ..^ K ) ) ` w ) -> v = w ) ) ) |
|
| 13 | fveqeq2 | |- ( v = x -> ( ( ( F |` ( 1 ..^ K ) ) ` v ) = ( ( F |` ( 1 ..^ K ) ) ` w ) <-> ( ( F |` ( 1 ..^ K ) ) ` x ) = ( ( F |` ( 1 ..^ K ) ) ` w ) ) ) |
|
| 14 | equequ1 | |- ( v = x -> ( v = w <-> x = w ) ) |
|
| 15 | 13 14 | imbi12d | |- ( v = x -> ( ( ( ( F |` ( 1 ..^ K ) ) ` v ) = ( ( F |` ( 1 ..^ K ) ) ` w ) -> v = w ) <-> ( ( ( F |` ( 1 ..^ K ) ) ` x ) = ( ( F |` ( 1 ..^ K ) ) ` w ) -> x = w ) ) ) |
| 16 | fveq2 | |- ( w = y -> ( ( F |` ( 1 ..^ K ) ) ` w ) = ( ( F |` ( 1 ..^ K ) ) ` y ) ) |
|
| 17 | 16 | eqeq2d | |- ( w = y -> ( ( ( F |` ( 1 ..^ K ) ) ` x ) = ( ( F |` ( 1 ..^ K ) ) ` w ) <-> ( ( F |` ( 1 ..^ K ) ) ` x ) = ( ( F |` ( 1 ..^ K ) ) ` y ) ) ) |
| 18 | equequ2 | |- ( w = y -> ( x = w <-> x = y ) ) |
|
| 19 | 17 18 | imbi12d | |- ( w = y -> ( ( ( ( F |` ( 1 ..^ K ) ) ` x ) = ( ( F |` ( 1 ..^ K ) ) ` w ) -> x = w ) <-> ( ( ( F |` ( 1 ..^ K ) ) ` x ) = ( ( F |` ( 1 ..^ K ) ) ` y ) -> x = y ) ) ) |
| 20 | 15 19 | rspc2va | |- ( ( ( x e. ( 1 ..^ K ) /\ y e. ( 1 ..^ K ) ) /\ A. v e. ( 1 ..^ K ) A. w e. ( 1 ..^ K ) ( ( ( F |` ( 1 ..^ K ) ) ` v ) = ( ( F |` ( 1 ..^ K ) ) ` w ) -> v = w ) ) -> ( ( ( F |` ( 1 ..^ K ) ) ` x ) = ( ( F |` ( 1 ..^ K ) ) ` y ) -> x = y ) ) |
| 21 | fvres | |- ( x e. ( 1 ..^ K ) -> ( ( F |` ( 1 ..^ K ) ) ` x ) = ( F ` x ) ) |
|
| 22 | 21 | eqcomd | |- ( x e. ( 1 ..^ K ) -> ( F ` x ) = ( ( F |` ( 1 ..^ K ) ) ` x ) ) |
| 23 | fvres | |- ( y e. ( 1 ..^ K ) -> ( ( F |` ( 1 ..^ K ) ) ` y ) = ( F ` y ) ) |
|
| 24 | 23 | eqcomd | |- ( y e. ( 1 ..^ K ) -> ( F ` y ) = ( ( F |` ( 1 ..^ K ) ) ` y ) ) |
| 25 | 22 24 | eqeqan12d | |- ( ( x e. ( 1 ..^ K ) /\ y e. ( 1 ..^ K ) ) -> ( ( F ` x ) = ( F ` y ) <-> ( ( F |` ( 1 ..^ K ) ) ` x ) = ( ( F |` ( 1 ..^ K ) ) ` y ) ) ) |
| 26 | 25 | biimpd | |- ( ( x e. ( 1 ..^ K ) /\ y e. ( 1 ..^ K ) ) -> ( ( F ` x ) = ( F ` y ) -> ( ( F |` ( 1 ..^ K ) ) ` x ) = ( ( F |` ( 1 ..^ K ) ) ` y ) ) ) |
| 27 | 26 | imim1d | |- ( ( x e. ( 1 ..^ K ) /\ y e. ( 1 ..^ K ) ) -> ( ( ( ( F |` ( 1 ..^ K ) ) ` x ) = ( ( F |` ( 1 ..^ K ) ) ` y ) -> x = y ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 28 | 27 | imp | |- ( ( ( x e. ( 1 ..^ K ) /\ y e. ( 1 ..^ K ) ) /\ ( ( ( F |` ( 1 ..^ K ) ) ` x ) = ( ( F |` ( 1 ..^ K ) ) ` y ) -> x = y ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 29 | 28 | 2a1d | |- ( ( ( x e. ( 1 ..^ K ) /\ y e. ( 1 ..^ K ) ) /\ ( ( ( F |` ( 1 ..^ K ) ) ` x ) = ( ( F |` ( 1 ..^ K ) ) ` y ) -> x = y ) ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( x e. ( 0 ... K ) /\ y e. ( 0 ... K ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) |
| 30 | 29 | 2a1d | |- ( ( ( x e. ( 1 ..^ K ) /\ y e. ( 1 ..^ K ) ) /\ ( ( ( F |` ( 1 ..^ K ) ) ` x ) = ( ( F |` ( 1 ..^ K ) ) ` y ) -> x = y ) ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( x e. ( 0 ... K ) /\ y e. ( 0 ... K ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) ) ) |
| 31 | 30 | expcom | |- ( ( ( ( F |` ( 1 ..^ K ) ) ` x ) = ( ( F |` ( 1 ..^ K ) ) ` y ) -> x = y ) -> ( ( x e. ( 1 ..^ K ) /\ y e. ( 1 ..^ K ) ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( x e. ( 0 ... K ) /\ y e. ( 0 ... K ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) ) ) ) |
| 32 | 20 31 | syl | |- ( ( ( x e. ( 1 ..^ K ) /\ y e. ( 1 ..^ K ) ) /\ A. v e. ( 1 ..^ K ) A. w e. ( 1 ..^ K ) ( ( ( F |` ( 1 ..^ K ) ) ` v ) = ( ( F |` ( 1 ..^ K ) ) ` w ) -> v = w ) ) -> ( ( x e. ( 1 ..^ K ) /\ y e. ( 1 ..^ K ) ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( x e. ( 0 ... K ) /\ y e. ( 0 ... K ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) ) ) ) |
| 33 | 32 | ex | |- ( ( x e. ( 1 ..^ K ) /\ y e. ( 1 ..^ K ) ) -> ( A. v e. ( 1 ..^ K ) A. w e. ( 1 ..^ K ) ( ( ( F |` ( 1 ..^ K ) ) ` v ) = ( ( F |` ( 1 ..^ K ) ) ` w ) -> v = w ) -> ( ( x e. ( 1 ..^ K ) /\ y e. ( 1 ..^ K ) ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( x e. ( 0 ... K ) /\ y e. ( 0 ... K ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) ) ) ) ) |
| 34 | 33 | pm2.43a | |- ( ( x e. ( 1 ..^ K ) /\ y e. ( 1 ..^ K ) ) -> ( A. v e. ( 1 ..^ K ) A. w e. ( 1 ..^ K ) ( ( ( F |` ( 1 ..^ K ) ) ` v ) = ( ( F |` ( 1 ..^ K ) ) ` w ) -> v = w ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( x e. ( 0 ... K ) /\ y e. ( 0 ... K ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) ) ) ) |
| 35 | ianor | |- ( -. ( x e. ( 1 ..^ K ) /\ y e. ( 1 ..^ K ) ) <-> ( -. x e. ( 1 ..^ K ) \/ -. y e. ( 1 ..^ K ) ) ) |
|
| 36 | eqcom | |- ( ( F ` x ) = ( F ` y ) <-> ( F ` y ) = ( F ` x ) ) |
|
| 37 | injresinjlem | |- ( -. x e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( y e. ( 0 ... K ) /\ x e. ( 0 ... K ) ) -> ( ( F ` y ) = ( F ` x ) -> y = x ) ) ) ) ) ) |
|
| 38 | 37 | imp | |- ( ( -. x e. ( 1 ..^ K ) /\ ( F ` 0 ) =/= ( F ` K ) ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( y e. ( 0 ... K ) /\ x e. ( 0 ... K ) ) -> ( ( F ` y ) = ( F ` x ) -> y = x ) ) ) ) ) |
| 39 | 38 | imp41 | |- ( ( ( ( ( -. x e. ( 1 ..^ K ) /\ ( F ` 0 ) =/= ( F ` K ) ) /\ ( F : ( 0 ... K ) --> V /\ K e. NN0 ) ) /\ ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) ) /\ ( y e. ( 0 ... K ) /\ x e. ( 0 ... K ) ) ) -> ( ( F ` y ) = ( F ` x ) -> y = x ) ) |
| 40 | eqcom | |- ( y = x <-> x = y ) |
|
| 41 | 39 40 | imbitrdi | |- ( ( ( ( ( -. x e. ( 1 ..^ K ) /\ ( F ` 0 ) =/= ( F ` K ) ) /\ ( F : ( 0 ... K ) --> V /\ K e. NN0 ) ) /\ ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) ) /\ ( y e. ( 0 ... K ) /\ x e. ( 0 ... K ) ) ) -> ( ( F ` y ) = ( F ` x ) -> x = y ) ) |
| 42 | 36 41 | biimtrid | |- ( ( ( ( ( -. x e. ( 1 ..^ K ) /\ ( F ` 0 ) =/= ( F ` K ) ) /\ ( F : ( 0 ... K ) --> V /\ K e. NN0 ) ) /\ ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) ) /\ ( y e. ( 0 ... K ) /\ x e. ( 0 ... K ) ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 43 | 42 | ex | |- ( ( ( ( -. x e. ( 1 ..^ K ) /\ ( F ` 0 ) =/= ( F ` K ) ) /\ ( F : ( 0 ... K ) --> V /\ K e. NN0 ) ) /\ ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) ) -> ( ( y e. ( 0 ... K ) /\ x e. ( 0 ... K ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 44 | 43 | ancomsd | |- ( ( ( ( -. x e. ( 1 ..^ K ) /\ ( F ` 0 ) =/= ( F ` K ) ) /\ ( F : ( 0 ... K ) --> V /\ K e. NN0 ) ) /\ ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) ) -> ( ( x e. ( 0 ... K ) /\ y e. ( 0 ... K ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 45 | 44 | exp41 | |- ( -. x e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( x e. ( 0 ... K ) /\ y e. ( 0 ... K ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) ) ) |
| 46 | injresinjlem | |- ( -. y e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( x e. ( 0 ... K ) /\ y e. ( 0 ... K ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) ) ) |
|
| 47 | 45 46 | jaoi | |- ( ( -. x e. ( 1 ..^ K ) \/ -. y e. ( 1 ..^ K ) ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( x e. ( 0 ... K ) /\ y e. ( 0 ... K ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) ) ) |
| 48 | 47 | a1d | |- ( ( -. x e. ( 1 ..^ K ) \/ -. y e. ( 1 ..^ K ) ) -> ( A. v e. ( 1 ..^ K ) A. w e. ( 1 ..^ K ) ( ( ( F |` ( 1 ..^ K ) ) ` v ) = ( ( F |` ( 1 ..^ K ) ) ` w ) -> v = w ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( x e. ( 0 ... K ) /\ y e. ( 0 ... K ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) ) ) ) |
| 49 | 35 48 | sylbi | |- ( -. ( x e. ( 1 ..^ K ) /\ y e. ( 1 ..^ K ) ) -> ( A. v e. ( 1 ..^ K ) A. w e. ( 1 ..^ K ) ( ( ( F |` ( 1 ..^ K ) ) ` v ) = ( ( F |` ( 1 ..^ K ) ) ` w ) -> v = w ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( x e. ( 0 ... K ) /\ y e. ( 0 ... K ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) ) ) ) |
| 50 | 34 49 | pm2.61i | |- ( A. v e. ( 1 ..^ K ) A. w e. ( 1 ..^ K ) ( ( ( F |` ( 1 ..^ K ) ) ` v ) = ( ( F |` ( 1 ..^ K ) ) ` w ) -> v = w ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( x e. ( 0 ... K ) /\ y e. ( 0 ... K ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) ) ) |
| 51 | 50 | imp41 | |- ( ( ( ( A. v e. ( 1 ..^ K ) A. w e. ( 1 ..^ K ) ( ( ( F |` ( 1 ..^ K ) ) ` v ) = ( ( F |` ( 1 ..^ K ) ) ` w ) -> v = w ) /\ ( F ` 0 ) =/= ( F ` K ) ) /\ ( F : ( 0 ... K ) --> V /\ K e. NN0 ) ) /\ ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) ) -> ( ( x e. ( 0 ... K ) /\ y e. ( 0 ... K ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 52 | 51 | ralrimivv | |- ( ( ( ( A. v e. ( 1 ..^ K ) A. w e. ( 1 ..^ K ) ( ( ( F |` ( 1 ..^ K ) ) ` v ) = ( ( F |` ( 1 ..^ K ) ) ` w ) -> v = w ) /\ ( F ` 0 ) =/= ( F ` K ) ) /\ ( F : ( 0 ... K ) --> V /\ K e. NN0 ) ) /\ ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) ) -> A. x e. ( 0 ... K ) A. y e. ( 0 ... K ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 53 | 52 | exp41 | |- ( A. v e. ( 1 ..^ K ) A. w e. ( 1 ..^ K ) ( ( ( F |` ( 1 ..^ K ) ) ` v ) = ( ( F |` ( 1 ..^ K ) ) ` w ) -> v = w ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> A. x e. ( 0 ... K ) A. y e. ( 0 ... K ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) ) |
| 54 | 12 53 | simplbiim | |- ( ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) -1-1-> V -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> A. x e. ( 0 ... K ) A. y e. ( 0 ... K ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) ) |
| 55 | 54 | com13 | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) -1-1-> V -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> A. x e. ( 0 ... K ) A. y e. ( 0 ... K ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) ) |
| 56 | 55 | ex | |- ( F : ( 0 ... K ) --> V -> ( K e. NN0 -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) -1-1-> V -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> A. x e. ( 0 ... K ) A. y e. ( 0 ... K ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) ) ) |
| 57 | 56 | com24 | |- ( F : ( 0 ... K ) --> V -> ( ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) -1-1-> V -> ( ( F ` 0 ) =/= ( F ` K ) -> ( K e. NN0 -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> A. x e. ( 0 ... K ) A. y e. ( 0 ... K ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) ) ) |
| 58 | 57 | impcom | |- ( ( ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) -1-1-> V /\ F : ( 0 ... K ) --> V ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( K e. NN0 -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> A. x e. ( 0 ... K ) A. y e. ( 0 ... K ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) ) |
| 59 | 58 | imp41 | |- ( ( ( ( ( ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) -1-1-> V /\ F : ( 0 ... K ) --> V ) /\ ( F ` 0 ) =/= ( F ` K ) ) /\ K e. NN0 ) /\ ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) ) -> A. x e. ( 0 ... K ) A. y e. ( 0 ... K ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 60 | dff13 | |- ( F : ( 0 ... K ) -1-1-> V <-> ( F : ( 0 ... K ) --> V /\ A. x e. ( 0 ... K ) A. y e. ( 0 ... K ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
|
| 61 | 11 59 60 | sylanbrc | |- ( ( ( ( ( ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) -1-1-> V /\ F : ( 0 ... K ) --> V ) /\ ( F ` 0 ) =/= ( F ` K ) ) /\ K e. NN0 ) /\ ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) ) -> F : ( 0 ... K ) -1-1-> V ) |
| 62 | 11 | biantrurd | |- ( ( ( ( ( ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) -1-1-> V /\ F : ( 0 ... K ) --> V ) /\ ( F ` 0 ) =/= ( F ` K ) ) /\ K e. NN0 ) /\ ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) ) -> ( Fun `' F <-> ( F : ( 0 ... K ) --> V /\ Fun `' F ) ) ) |
| 63 | df-f1 | |- ( F : ( 0 ... K ) -1-1-> V <-> ( F : ( 0 ... K ) --> V /\ Fun `' F ) ) |
|
| 64 | 62 63 | bitr4di | |- ( ( ( ( ( ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) -1-1-> V /\ F : ( 0 ... K ) --> V ) /\ ( F ` 0 ) =/= ( F ` K ) ) /\ K e. NN0 ) /\ ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) ) -> ( Fun `' F <-> F : ( 0 ... K ) -1-1-> V ) ) |
| 65 | 61 64 | mpbird | |- ( ( ( ( ( ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) -1-1-> V /\ F : ( 0 ... K ) --> V ) /\ ( F ` 0 ) =/= ( F ` K ) ) /\ K e. NN0 ) /\ ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) ) -> Fun `' F ) |
| 66 | 65 | ex | |- ( ( ( ( ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) -1-1-> V /\ F : ( 0 ... K ) --> V ) /\ ( F ` 0 ) =/= ( F ` K ) ) /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> Fun `' F ) ) |
| 67 | 66 | exp41 | |- ( ( F |` ( 1 ..^ K ) ) : ( 1 ..^ K ) -1-1-> V -> ( F : ( 0 ... K ) --> V -> ( ( F ` 0 ) =/= ( F ` K ) -> ( K e. NN0 -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> Fun `' F ) ) ) ) ) |
| 68 | 10 67 | biimtrdi | |- ( F : ( 0 ... K ) --> V -> ( Fun `' ( F |` ( 1 ..^ K ) ) -> ( F : ( 0 ... K ) --> V -> ( ( F ` 0 ) =/= ( F ` K ) -> ( K e. NN0 -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> Fun `' F ) ) ) ) ) ) |
| 69 | 68 | pm2.43a | |- ( F : ( 0 ... K ) --> V -> ( Fun `' ( F |` ( 1 ..^ K ) ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( K e. NN0 -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> Fun `' F ) ) ) ) ) |
| 70 | 69 | 3imp | |- ( ( F : ( 0 ... K ) --> V /\ Fun `' ( F |` ( 1 ..^ K ) ) /\ ( F ` 0 ) =/= ( F ` K ) ) -> ( K e. NN0 -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> Fun `' F ) ) ) |
| 71 | 70 | com12 | |- ( K e. NN0 -> ( ( F : ( 0 ... K ) --> V /\ Fun `' ( F |` ( 1 ..^ K ) ) /\ ( F ` 0 ) =/= ( F ` K ) ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> Fun `' F ) ) ) |