This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite set is equinumerous to its union with a smaller one. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infunabs | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A u. B ) ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> A e. dom card ) |
|
| 2 | reldom | |- Rel ~<_ |
|
| 3 | 2 | brrelex1i | |- ( B ~<_ A -> B e. _V ) |
| 4 | 3 | 3ad2ant3 | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> B e. _V ) |
| 5 | undjudom | |- ( ( A e. dom card /\ B e. _V ) -> ( A u. B ) ~<_ ( A |_| B ) ) |
|
| 6 | 1 4 5 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A u. B ) ~<_ ( A |_| B ) ) |
| 7 | infdjuabs | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A |_| B ) ~~ A ) |
|
| 8 | domentr | |- ( ( ( A u. B ) ~<_ ( A |_| B ) /\ ( A |_| B ) ~~ A ) -> ( A u. B ) ~<_ A ) |
|
| 9 | 6 7 8 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A u. B ) ~<_ A ) |
| 10 | unexg | |- ( ( A e. dom card /\ B e. _V ) -> ( A u. B ) e. _V ) |
|
| 11 | 1 4 10 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A u. B ) e. _V ) |
| 12 | ssun1 | |- A C_ ( A u. B ) |
|
| 13 | ssdomg | |- ( ( A u. B ) e. _V -> ( A C_ ( A u. B ) -> A ~<_ ( A u. B ) ) ) |
|
| 14 | 11 12 13 | mpisyl | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> A ~<_ ( A u. B ) ) |
| 15 | sbth | |- ( ( ( A u. B ) ~<_ A /\ A ~<_ ( A u. B ) ) -> ( A u. B ) ~~ A ) |
|
| 16 | 9 14 15 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A u. B ) ~~ A ) |