This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image of a supremum under an isomorphism. (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supiso.1 | |- ( ph -> F Isom R , S ( A , B ) ) |
|
| supiso.2 | |- ( ph -> C C_ A ) |
||
| supisoex.3 | |- ( ph -> E. x e. A ( A. y e. C -. x R y /\ A. y e. A ( y R x -> E. z e. C y R z ) ) ) |
||
| supiso.4 | |- ( ph -> R Or A ) |
||
| Assertion | supiso | |- ( ph -> sup ( ( F " C ) , B , S ) = ( F ` sup ( C , A , R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supiso.1 | |- ( ph -> F Isom R , S ( A , B ) ) |
|
| 2 | supiso.2 | |- ( ph -> C C_ A ) |
|
| 3 | supisoex.3 | |- ( ph -> E. x e. A ( A. y e. C -. x R y /\ A. y e. A ( y R x -> E. z e. C y R z ) ) ) |
|
| 4 | supiso.4 | |- ( ph -> R Or A ) |
|
| 5 | isoso | |- ( F Isom R , S ( A , B ) -> ( R Or A <-> S Or B ) ) |
|
| 6 | 1 5 | syl | |- ( ph -> ( R Or A <-> S Or B ) ) |
| 7 | 4 6 | mpbid | |- ( ph -> S Or B ) |
| 8 | isof1o | |- ( F Isom R , S ( A , B ) -> F : A -1-1-onto-> B ) |
|
| 9 | f1of | |- ( F : A -1-1-onto-> B -> F : A --> B ) |
|
| 10 | 1 8 9 | 3syl | |- ( ph -> F : A --> B ) |
| 11 | 4 3 | supcl | |- ( ph -> sup ( C , A , R ) e. A ) |
| 12 | 10 11 | ffvelcdmd | |- ( ph -> ( F ` sup ( C , A , R ) ) e. B ) |
| 13 | 4 3 | supub | |- ( ph -> ( u e. C -> -. sup ( C , A , R ) R u ) ) |
| 14 | 13 | ralrimiv | |- ( ph -> A. u e. C -. sup ( C , A , R ) R u ) |
| 15 | 4 3 | suplub | |- ( ph -> ( ( u e. A /\ u R sup ( C , A , R ) ) -> E. z e. C u R z ) ) |
| 16 | 15 | expd | |- ( ph -> ( u e. A -> ( u R sup ( C , A , R ) -> E. z e. C u R z ) ) ) |
| 17 | 16 | ralrimiv | |- ( ph -> A. u e. A ( u R sup ( C , A , R ) -> E. z e. C u R z ) ) |
| 18 | 1 2 | supisolem | |- ( ( ph /\ sup ( C , A , R ) e. A ) -> ( ( A. u e. C -. sup ( C , A , R ) R u /\ A. u e. A ( u R sup ( C , A , R ) -> E. z e. C u R z ) ) <-> ( A. w e. ( F " C ) -. ( F ` sup ( C , A , R ) ) S w /\ A. w e. B ( w S ( F ` sup ( C , A , R ) ) -> E. v e. ( F " C ) w S v ) ) ) ) |
| 19 | 11 18 | mpdan | |- ( ph -> ( ( A. u e. C -. sup ( C , A , R ) R u /\ A. u e. A ( u R sup ( C , A , R ) -> E. z e. C u R z ) ) <-> ( A. w e. ( F " C ) -. ( F ` sup ( C , A , R ) ) S w /\ A. w e. B ( w S ( F ` sup ( C , A , R ) ) -> E. v e. ( F " C ) w S v ) ) ) ) |
| 20 | 14 17 19 | mpbi2and | |- ( ph -> ( A. w e. ( F " C ) -. ( F ` sup ( C , A , R ) ) S w /\ A. w e. B ( w S ( F ` sup ( C , A , R ) ) -> E. v e. ( F " C ) w S v ) ) ) |
| 21 | 20 | simpld | |- ( ph -> A. w e. ( F " C ) -. ( F ` sup ( C , A , R ) ) S w ) |
| 22 | 21 | r19.21bi | |- ( ( ph /\ w e. ( F " C ) ) -> -. ( F ` sup ( C , A , R ) ) S w ) |
| 23 | 20 | simprd | |- ( ph -> A. w e. B ( w S ( F ` sup ( C , A , R ) ) -> E. v e. ( F " C ) w S v ) ) |
| 24 | 23 | r19.21bi | |- ( ( ph /\ w e. B ) -> ( w S ( F ` sup ( C , A , R ) ) -> E. v e. ( F " C ) w S v ) ) |
| 25 | 24 | impr | |- ( ( ph /\ ( w e. B /\ w S ( F ` sup ( C , A , R ) ) ) ) -> E. v e. ( F " C ) w S v ) |
| 26 | 7 12 22 25 | eqsupd | |- ( ph -> sup ( ( F " C ) , B , S ) = ( F ` sup ( C , A , R ) ) ) |